Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Hồng Nhung
Xem chi tiết
Nguyễn Bình Nguyên
14 tháng 5 2016 lúc 11:15

Ta có : 

\(a^{\log_bc}=c^{\log_ba}\Rightarrow a^{\log_bc}+c^{\log_ab}=c^{\log_ba}+c^{\log_ab}\ge2\sqrt{c^{\log_ba}.c^{\log_ab}}=2\sqrt{c^{\log_ba+\log_ab}}\) (1)

Vì \(a,b>1\) nên áp dụng BĐT Cauchy cho 2 số không âm \(\log_ba\) và \(\log_ab\), ta được :

\(\log_ab+\log_ba\ge2\sqrt{\log_ab.\log_ba}=2\)  (2)

Từ (1) và (2) \(\Rightarrow a^{\log_bc}+b^{\log_ab}\ge2\sqrt{c^2}=2c\)

hay \(\Rightarrow a^{\log_bc}+c^{\log_ab}\ge2c\)

Chứng minh tương tự ta được :

                           \(a^{\log_bc}+b^{\log_ca}\ge2a\)

                           \(b^{\log_ca}+c^{\log_ab}\ge2b\)

\(\Rightarrow2\left(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\right)\ge2\left(a+b+c\right)\)

hay : 

              \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge a+b+c\)  (*)

Mặt khác theo BĐT Cauchy ta có : \(a+b+c\ge3\sqrt[3]{abc}\)  (2*)

Từ (*) và (2*) ta có : 

                        \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)

Nguyễn Kim Khánh Hà
Xem chi tiết
Ngô Tuyết Mai
6 tháng 5 2016 lúc 9:20

Ta thấy rằng do a < b nên \(\log_ab>1\)

Khi đó nếu xét cùng cơ số là b thì : \(\log_a\left(\log_ab\right)>\log_b\left(\log_ab\right)>0\)

Ta cũng có \(\log_ca< 1\) do a < c, suy ra \(0>\log_c\left(\log_ca\right)>\log_b\left(\log_ca\right)\)

Từ đó suy ra :

\(\log_a\left(\log_ab\right)+\log_b\left(\log_bc\right)+\log_c\left(\log_ca\right)>\log_b\left(\log_ab.\log_bc.\log_ca\right)=0\)

títtt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 lúc 19:37

\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)

\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)

\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)

\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)

Mai Gia Linh
Xem chi tiết
Đỗ Hạnh Quyên
11 tháng 5 2016 lúc 16:09

\(B=\left(\log b_a+\log_ba+2\right)\left(\log b_a-\log b_{ab}\right)-1=\left(\log b_a+\frac{1}{\log b_a}+2\right)\left(\log b_a.\log_ba-\left(\log_{ab}b.\log_ba\right)\right)-1\)

   \(=\frac{\log^2_ab+2\log_ab+1}{\log_ab}\left(1-\log_{ab}a\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{\log_aab}\right)-1\)

  \(=\frac{\left(\log_ab+1\right)^2}{\log_ab}\left(1-\frac{1}{1+\log_ab}\right)-1=\frac{\left(\log_ab+1\right)^2}{\log_ab}.\frac{\log_ab}{1+\log_ab}-1=\log_ab+1-1=\log_ab\)

Nguyễn Thị Quỳnh Như
Xem chi tiết
Nguyễn Minh Hằng
4 tháng 5 2016 lúc 10:27

Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)

             \(=\log_ba+1-\log_ba=1\)

Nguyễn Thanh Uyên
Xem chi tiết
Bắc Băng Dương
5 tháng 5 2016 lúc 9:55

\(=\left(\log_ab+\log_ba+2\right)\left(1-\log_{ab}a\right)-1\)

\(=\left(\log_ab+\log_ba+2\right)\left(1-\frac{1}{1+\log_ab}\right)-1\)

\(=\frac{1}{1+\log_ab}\left(\log_ab+\log_ba+2\right)-1\)

\(=\frac{1}{1+\log_ab}\left[\left(\log_ab+\log_ba+2\right)-1-\log_ab\right]\)

\(=\frac{1}{1+\log_ab}\left(\log_ab+\log^2_ba\right)=\log_ab\)

 

_Nhạt_
Xem chi tiết
Nguyễn Linh Chi
22 tháng 6 2019 lúc 11:39

Lần sau em đăng trong h.vn

1. \(log_{ab}c=\frac{1}{log_cab}=\frac{1}{log_ca+log_cb}=\frac{1}{\frac{1}{log_ac}+\frac{1}{log_bc}}=\frac{1}{\frac{log_ac+log_bc}{log_ac.log_bc}}=\frac{log_ac.log_bc}{log_ac+log_bc}\)

Đáp án B: 

2. \(f'\left(x\right)=-4x^3+8x\)

\(f'\left(x\right)=0\Leftrightarrow-4x^3+8x=0\Leftrightarrow x=0,x=\sqrt{2},x=-\sqrt{2}\)

Có BBT: 

x -căn2 0 căn2 f' f 0 0 0 - + - +

Nhìn vào bảng biên thiên ta có hàm số ... là đáp án C

Đào Thu Hiền
Xem chi tiết
bui trong thanh nam
Xem chi tiết