Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thị Minh Trí
Xem chi tiết
Phạm Thảo Vân
11 tháng 5 2016 lúc 13:44

\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)=\log_3\left(\log_{2^{\frac{3}{2}}}2^{\frac{1}{6}}\right)=\log_3\left(\frac{1}{6}.\frac{2}{3}\right)=\log_33^{-2}=-2\)

Nguyễn Thị Yến Xuân
Xem chi tiết
Phạm Thảo Vân
11 tháng 5 2016 lúc 12:55

\(F=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)=\log_{3-2\sqrt{2}}\left[\left(3^3\right)^{^{\log_92^2}}+2^{\log_{2^3}3^3}\right]\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\frac{3}{2}\log_32}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\log_32^{\frac{3}{2}}}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(2^{\frac{3}{2}}+3\right)=\log_{\left(3-2\sqrt{2}\right)^{-1}}\left(3-2\sqrt{2}\right)=-1\)

Nguyễn Tiến Mạnh
Xem chi tiết
Nguyễn Quốc Hải
12 tháng 5 2016 lúc 10:06

\(A=\log_{\frac{\sqrt{b}}{a}}\frac{\sqrt[3]{b}}{\sqrt{a}}=\log_{\frac{\sqrt{b}}{a}}b^{\frac{1}{3}}-\log_{\frac{\sqrt{b}}{a}}a^{\frac{1}{3}}=\frac{1}{3\log_b\frac{\sqrt{b}}{a}}-\frac{1}{2\log_a\frac{\sqrt{b}}{a}}\)

    \(=\frac{1}{3\left(\frac{1}{2}-\log_ba\right)}-\frac{1}{2\left(\frac{1}{2}\log_ab-1\right)}\)

    \(=\frac{1}{3\left(\frac{1}{2}-\log_ba\right)}-\frac{1}{\log_ab-2}=\frac{a\log_ab}{3\left(\log_ab-2\right)}-\frac{1}{\log_ab-2}\)

   \(=\frac{2\sqrt{3}-3}{3\left(\sqrt{3}-2\right)}=-\frac{\sqrt{3}}{3}\)

Trần Đào Tuấn
Xem chi tiết
Nguyễn Minh Nguyệt
4 tháng 5 2016 lúc 15:38

\(D=\log_{5^{-1}}\left(5^2\right)-3\log_{3^2}\left(3^{-1}\right)+4.\log_{2^{\frac{3}{2}}}2^6=-2+\frac{3}{2}+16=\frac{31}{2}\)

Dương Thị Hồng Uyên
Xem chi tiết
Nguyễn Thanh Uyên
Xem chi tiết
Nguyễn Minh Nguyệt
4 tháng 5 2016 lúc 15:46

\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)

títtt
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2024 lúc 19:20

\(log_5125=log_55^3=3\)

\(log_6216=log_66^3=3\)

\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)

\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)

\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)

\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)

\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)

\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 22:42

\(a;b>0\Rightarrow3a+2b+1>1\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\) đồng biến

Mà \(9a^2+b^2\ge2\sqrt{9a^2b^2}=6ab\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)\)

\(\Rightarrow log_{3a+2b+1}\left(9a^2+b^2+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge log_{3a+2b+1}\left(6ab+1\right)+log_{6ab+1}\left(3a+2b+1\right)\ge2\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}log_{6ab+1}\left(3a+2b+1\right)=1\\3a=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6ab+1=3a+2b+1\\b=3a\end{matrix}\right.\)

\(\Rightarrow18a^2+1=3a+6a+1\)

\(\Leftrightarrow18a^2-9a=0\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\)

Nguyễn Thị Ngọc Uyên
Xem chi tiết
Phạm Thảo Vân
11 tháng 5 2016 lúc 13:38

\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)