cho ba số thực dương a b c thỏa mãn ab+bc+ac≤1. tìm giá trị nhỏ nhất của biểu thức P biết:
P= \(\dfrac{1}{\sqrt{a^2+b^2-abc}}+\dfrac{1}{\sqrt{a^2+c^2-abc}}+\dfrac{1}{\sqrt{c^2+b^2-abc}}\)
có bao nhiêu số thực dương a,b sao cho ab+1≤b. Biểu thức P=\(\dfrac{a+b}{\sqrt{a^2}-ab+3b^2}+\dfrac{2a-b}{6\left(a+b\right)}\) đạt giá trị lớn nhất.
Tính giá trị của biểu thức sau: \(log^2_{\dfrac{1}{a}}a^2+log_{a^2}a^{\dfrac{1}{2}}\) (1≠a>0)
A. \(\dfrac{17}{4}\)
B. \(\dfrac{13}{4}\)
C. \(-\dfrac{11}{4}\)
D. -\(\dfrac{15}{4}\)
Cho 2 số thực dương x,y thỏa mãn \({\left( {x + y} \right)^3} + x + y + {\log _2}\dfrac{{x + y}}{{1 - xy}} = 8{\left( {1 - xy} \right)^3} - 2xy + 3\) Tính giá trị nhỏ nhất của biểu thứ
P = x + 3y |
A. \(\dfrac{{1 + \sqrt {15} }}{2}.\)
B. \(\dfrac{{3 + \sqrt {15} }}{2}.\)
C.\(\sqrt {15} - 2.\)
D. \(\dfrac{{3 + 2\sqrt {15} }}{6}.\)
Cho hai số thực dương a; b thỏa mãn log2(a + 1) + log2(b + 1) ≥ 6 Giá trị nhỏ nhất của biểu thức S = a + b là
A.12
B.14
C. 8
D.16
Cho hai số thực x , y thỏa mãn 0 ≤ x ≤ 1 2 , 0 < y ≤ 1 và log ( 11 - 2 x - y ) = 2 x + 4 y - 1 Xét biểu thức P = 16 x 2 y - 2 x ( 3 y + 2 ) - y + 5 . Gọi m , M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của P. Khi đó giá trị của biểu thức T = 4 m + M bằng bao nhiêu?
A. 16
B. 18
C. 17
D. 19
cho ba số thực dương a b c thỏa mãn ab+bc+ac\(\le\)1. tìm giá trị nhỏ nhất của biểu thức P biết:
P=\(\frac{1}{\sqrt{a^2+b^2-abc}}+\frac{1}{\sqrt{a^2+c^2-abc}}+\frac{1}{\sqrt{c^2+b^2-abc}}\)
Cho a là số nguyên dương lớn nhất thỏa mãn \(3{\log _3}\left( {1 + \sqrt a + \sqrt[3]{a}} \right) > 2{\log _2}\sqrt a\).Tìm phần nguyên của \({\log _2}\left( {2017a} \right)\)
A.14
B.22
C.16
D.19
Cho hàm số f ( x ) = 3 x - 4 + ( x + 1 ) . 2 7 - x - 6 x + 3 . Giả sử m 0 = a b a , b ∈ ℤ , a b l à p h â n s ố t ố i g i ả n là giá trị nhỏ nhất của tham số thực m sao cho phương trình f 7 - 4 6 x - 9 x 2 + 2 m - 1 = 0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P = a + b 2
A. 11
B. 7
C. -1
D. 9