Cho 2 số thực dương x,y thỏa mãn \({\left( {x + y} \right)^3} + x + y + {\log _2}\dfrac{{x + y}}{{1 - xy}} = 8{\left( {1 - xy} \right)^3} - 2xy + 3\) Tính giá trị nhỏ nhất của biểu thứ
P = x + 3y |
A. \(\dfrac{{1 + \sqrt {15} }}{2}.\)
B. \(\dfrac{{3 + \sqrt {15} }}{2}.\)
C.\(\sqrt {15} - 2.\)
D. \(\dfrac{{3 + 2\sqrt {15} }}{6}.\)
cho hai số a,b là hai số thực đều lớn hơn 1. giá trị nhỏ nhất của biểu thức s=
\(\dfrac{1}{log_{b\sqrt[3]{a}}}\)+\(\dfrac{1}{log\sqrt[3]{ab^2}}\)
log3(\(3+\sqrt{3}\)) > log4x
\(\Leftrightarrow\)log3(\(3+\sqrt{3}\)) > log3x : log34
\(\Leftrightarrow\)log3(\(3+\sqrt{3}\)).log34 > log3x
\(\Leftrightarrow\)log3(\(\left(3+\sqrt{3}\right)^{log_{ }_34}\)> log3x
\(\Leftrightarrow\)x < \(\left(3+\sqrt{3}\right)^{log_34}\)
ko có đt nên tớ làm trong này
Cho các số phức z1,z2,z3 thỏa mãn \(\left|\text{z}_1+1-4i\right|=2,\left|\text{z}_2-4-6i\right|=1\) và \(\left|\text{z}_3-1\right|=\left|\text{z}_3-2+i\right|\). Tìm giá trị nhỏ nhất của biếu thức \(P=\left|\text{z}_3-\text{z}_1\right|+\left|\text{z}_3-\text{z}_2\right|\)
\(A.\dfrac{\sqrt{14}}{2}+2\)
\(B.\sqrt{29}-3\)
\(C.\dfrac{\sqrt{14}}{2}+2\sqrt{2}\)
\(D.\sqrt{85}-3\)
Cho các số thực dương a,b thỏa mãn log a = x , log b = y . Tính P = log ( a 2 b 3 )
Cho hàm số y = ln 2 x - a - 2 m ln 2 x - a + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 x 2 + a 2 - 2 n - 1 - 1 log 2 x a + 1 = 0 (với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thỏa mãn M a x 1 , e 2 y = 1 . Số phần tử của S là:
A. 0
B. 1
C. 2
D. Vô số
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Có bao nhiêu giá trị nguyên dương của x thỏa mãn bất phương trình dưới đây:
log (x - 40) + log (60 - x) < 2?
A. 20
B. 10
C. Vô số
D. 18
Cho hàm số y = ln ( 2 x - a ) - 2 m ln ( 2 x - a ) + 2 (m là tham số thực), trong đó x, a là các số thực thỏa mãn đẳng thức
log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + log 2 ( x 2 + a 2 ) + . . . + log . . . 2 ( x 2 + a 2 ) - ( 2 n + 1 - 1 ) ( log 2 x a + 1 ) = 0
(với n là số nguyên dương). Gọi S là tập hợp các giá trị của m thoả mãn m a x [ 1 ; e 2 ] y = 1 . Số phần tử của S là
A. 0
B. 1
C. 2
D. Vô số