Cho các số phức z1,z2,z3 thỏa mãn \(\left|\text{z}_1+1-4i\right|=2,\left|\text{z}_2-4-6i\right|=1\) và \(\left|\text{z}_3-1\right|=\left|\text{z}_3-2+i\right|\). Tìm giá trị nhỏ nhất của biếu thức \(P=\left|\text{z}_3-\text{z}_1\right|+\left|\text{z}_3-\text{z}_2\right|\)
\(A.\dfrac{\sqrt{14}}{2}+2\)
\(B.\sqrt{29}-3\)
\(C.\dfrac{\sqrt{14}}{2}+2\sqrt{2}\)
\(D.\sqrt{85}-3\)