\(log_5125=log_55^3=3\)
\(log_6216=log_66^3=3\)
\(log_{10}\dfrac{1}{10000}=log_{10}10^{-4}=-4\)
\(log\sqrt{1000}=log_{10}10^{\dfrac{3}{2}}=\dfrac{3}{2}\)
\(81^{log_35}=3^{3log_35}=3^{log_3125}=125\)
\(125^{log_52}=5^{3log_52}=5^{log_58}=8\)
\(\left(\dfrac{1}{49}\right)^{log_7\dfrac{1}{8}}=7^{-2log_7\dfrac{1}{8}}=7^{log_764}=64\)
\(\left(\dfrac{1}{625}\right)^{log_52}=5^{-4log_52}=5^{log_5\dfrac{1}{16}}=\dfrac{1}{16}\)