Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 13:16

Chọn C

Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 13:42

Chọn C

Nguyễn Mạnh Vũ
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết
Lê Song Phương
19 tháng 11 2023 lúc 12:22

 Xét câu A, hiển nhiên khi \(n\rightarrow+\infty\) thì \(a_n=\sqrt{n^3+n}\rightarrow+\infty\) nên dãy (an) không bị chặn.

 Ở câu C, lấy n chẵn và cho \(n\rightarrow+\infty\) thì dãy (cn) cũng sẽ tiến tới \(+\infty\). Do đó dãy (cn) cũng là 1 dãy không bị chặn.

 Ở câu B, ta xét hàm số \(f\left(x\right)=x^2+\dfrac{1}{x}\) trên \(\left[1;+\infty\right]\), ta thấy \(f'\left(x\right)=2x-\dfrac{1}{x^2}\) \(=\dfrac{2x^3-1}{x^2}\) \(=\dfrac{x^3+x^3-1}{x^2}>0,\forall x\ge1\) . Do đó \(f\left(x\right)\) đồng biến trên \(\left[1;+\infty\right]\) và do đó cũng đồng biến trên \(ℕ^∗\). Nói cách khác, (bn) là dãy tăng . Như vậy, nếu bn bị chặn thì tồn tại giới hạn hữu hạn. Giả sử \(\lim\limits_{n\rightarrow+\infty}b_n=L>1\). Chuyển qua giới hạn, ta được \(L=\lim\limits_{n\rightarrow+\infty}\left(n^2+\dfrac{1}{n}\right)=+\infty\), vô lí. Vậy (bn) không bị chặn trên.

 Còn lại câu D. Ta thấy với \(n\inℕ^∗\) thì hiển nhiên \(d_n>0\). Ta thấy \(d_n=\dfrac{3n}{n^3+2}=\dfrac{3n}{n^3+1+1}\le\dfrac{3n}{3\sqrt[3]{n^3.1.1}}=1\), với mọi \(n\inℕ^∗\). Vậy, (dn) bị chặn 

 \(\Rightarrow\) Chọn D.

 

trần thị ngọc trân
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 23:31

ĐK: \(n\ge3\)

\(n!+\dfrac{n!}{2}-\dfrac{n!}{\left(n-3\right)!.2}=5n^2+26n+684\)

\(\Leftrightarrow\dfrac{3}{2}n!=\dfrac{n\left(n-1\right)\left(n-2\right)}{2}+5n^2+26n+684\)

\(\Leftrightarrow3.n!-n^3-7n^2-54n-1368=0\) (1)

- Với \(n=\left\{3;4;5\right\}\) không thỏa mãn

- Với \(n=6\) thỏa mãn

- Với \(n>6\), ta có:

\(3.n!>3.n\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)>3n\left(n-1\right)\left(n-2\right).3.2.1\)

\(\Rightarrow3.n!>18n\left(n-1\right)\left(n-2\right)\)

\(\Rightarrow3.n!-n^3-7n^2-54n-1368>18n\left(n-1\right)\left(n-2\right)-n^3-7n^2-54n-1368\)

\(=\left(n-6\right)\left(17n^2+41n+228\right)>0\)

\(\Rightarrow\) (1) vô nghiệm 

Vậy \(n=6\) là giá trị duy nhất thỏa mãn

Lương Công Thành
Xem chi tiết
Hoàng Trọng Nghĩa
25 tháng 4 2016 lúc 14:44

Giải:

Điều kiện là n\(\ge\)2, n\(\in\)Z

Ta có 

(1) \(\Leftrightarrow\)\(\frac{\left(n+2\right)!}{\left(n-1\right)!3!}\)+\(\frac{\left(n+2\right)!}{n!2!}\)>\(\frac{5}{2}\)\(\frac{n!}{\left(n-2\right)!}\)

     \(\Leftrightarrow\)\(\frac{n\left(n+1\right)\left(n+2\right)}{6}\)+\(\frac{\left(n+1\right)\left(n+2\right)}{2}\)>\(\frac{5\left(n-1\right)n}{2}\)

     \(\Leftrightarrow\)n(n2+3n+2) + 3(n2+3n+2) > 15(n2-n)

     \(\Leftrightarrow\)n3-9n2+26n+6>0

     \(\Leftrightarrow\)n(n2-9n+26)+6>0                (1)

Xét tam thứ bậc hai n2-9n+26, ta thấy \(\Delta\)=81-104<0

Vậy n2-9n+26>0  với mọi n. Từ đó suy ra với mọi n\(\ge\)2 thì (1) luôn luôn đúng. Tóm lại mọi số nguyên n\(\ge\)2 đều là nghiệm của (1).

Hải Yến Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2022 lúc 15:55

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-3\ge0\\2x^2-3x+1\ge0\\x^2+2x-3\le2x^2-3x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le\dfrac{1}{2}\end{matrix}\right.\\x^2-5x+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\\\left[{}\begin{matrix}x\ge4\\x\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x\le-3\\x\ge4\end{matrix}\right.\)

vũ kim oanh
Xem chi tiết
Nguyễn Thị Hiền
25 tháng 4 2016 lúc 15:23

Điều kiện là n\(\ge\)5, n\(\in\)Z

Ta có

\(\Leftrightarrow\) \(C_{n+1}^5\) = 3\(C_{n+1}^6\) (áp dụng công thức \(C_{n+1}^k\) = \(C_n^k\) + \(C_n^{k-1}\))

\(\Leftrightarrow\) \(\frac{\left(n+1\right)!}{\left(n-4\right)!5!}\) = 3\(\frac{\left(n+1\right)!}{\left(n-5\right)!6!}\)

\(\Leftrightarrow\) \(\frac{1}{\left(n-4\right)!5!}\) = \(\frac{3}{\left(n-5\right)!6!}\)

\(\Leftrightarrow\) \(\frac{1}{n-4}\) = \(\frac{3}{6}\)

\(\Leftrightarrow\) 3n - 12 = 6

\(\Leftrightarrow\) n = 6

Rõ ràng n = 6 thỏa mãn điều kiện n\(\ge\) 5, n \(\in\) Z. Vậy nghiệm duy nhất của chương trình đã cho là n = 6.

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 10:48

Ta có:

\({a_1} = 0;{a_2} = 1;{a_3} = 2;{a_4} = 3;{a_5} = 4\).

\({b_1} = 2.1 = 2;{b_2} = 2.2 = 4;{b_3} = 2.3 = 6;{b_4} = 2.4 = 8\).

 \({c_1} = 1;{c_2} = {c_1} + 1 = 1 + 1 = 2;{c_3} = {c_2} + 1 = 2 + 1 = 3;{c_4} = {c_3} + 1 = 3 + 1 = 4\).

+ Chu vi đường tròn có bán kính \(n\) là \({d_n} = 2\pi n\).

Ta có: \({d_1} = 2\pi .1 = 2\pi ;{d_2} = 2\pi .2 = 4\pi ;{d_3} = 2\pi .3 = 6\pi ;{d_4} = 2\pi .4 = 8\pi \).