Giúp mình giải mẫu sin(x-120°)+ cos2x=0
giúp mình với, mình đg cần gấp trong chiều nay, cảm ơn
giải các pt sau:
2. \(\sqrt{3}\) .cosx+sin2x=0
3. 8sinx.cosx.cos2x=cos8(\(\frac{\pi}{16}\) -x)
8. 1+cosx+cos2x+cos3x=0
9. sin2x+sin22x+sin23x+sin24x=2
pt <=> 1+cos2x + cos3x + cosx = 0
<=> 2cos²x + 2cos2x.cosx = 0
<=> 2cosx.(cos2x + cosx) = 0
<=> 4cosx.cos(3x/2).cos(x/2) = 0 <=>
[cosx = 0
[cos(3x/2) = 0 (tập nghiệm cos3x/2 = 0 chứa tập nghiệm cosx/2 = 0)
<=>
[x = pi/2 + kpi
[3x/2 = pi/2 + kpi
<=>
[x = pi/2 + kpi
[x = pi/3 + 2kpi/3 (k thuộc Z)
sin^2 x + sin^2 2x + sin^2 3x + sin^2 4x =
[1-cos(2x)]/2+ [1-cos(4x)]/2+[1-cos(6x)]/2+[1-cos(8x)]/... =
2- [ cos(2x)+cos(4x)+cos(6x)+cos(8x)]/2 =
2- 1/2· [ cos(2x)+cos(8x)]+cos(4x)+cos(6x)]=
2- 1/2· [ 2·cos(-3x)·cos(5x) + 2· cos(-x)·cos(5x)]=
2- cos(5x)· [cos(3x)+cosx] =
2- cos(5x)· 2·cos(2x)·cosx =
2- 2·cosx·cos(2x)·cos(5x)= 2 <-->
*cosx=0 --> x= pi/2+ k·pi with k thuộc Z or
*cos(2x)=0 --> x= pi/4 + k·pi/2 with k thuộc Z or
* cos(5x)=0 --> x= pi/10+ k·pi/5 with k thuộc Z
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
giải phương trình:
\(4\cos2x\left(\cos2x+4\sin x-3\right)-24\sin x-16\sqrt{3}\cos x+17=0\)
Mọi người giúp mình bài này với (lớp 11)
1) \(\text{ 2cos4x*(cos2x-cos4x)=0 (mình ko biết giải phần cos2x-cos4x)}\)
2) \(\frac{1}{2}\left(cos5x-cos7x\right)=cos^22x-cos^23x\)
3) \(sin^22x=sin^23x\)
Đăng lên chô khác đi :D đây toàn lớp THCS có lẽ ít ai giải :v
vị dụ VMF , HMF, h,...................................><
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
cos3x=sin(\(\dfrac{\pi}{2}\)-3x)
\(\Leftrightarrow\)sin(\(\dfrac{\pi}{2}\)-3x)=sin2x
\(\Leftrightarrow\)2x=\(\dfrac{\pi}{2}\)-3x+k2\(\pi\) or 2x=3x-\(\dfrac{\pi}{2}\)+k2\(\pi\)
\(\Leftrightarrow\)x=...dùng công thức biến đổi tổng thành tích , giải các phương trình sau : a) \(\cos3x=\sin2x\) ; b) \(\sin\left(x-120^o\right)-\cos2x=0\)
giải phương trình:
\(\left(\cos2x+\sin2x\right)\cos x+2\cos2x-\sin x=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sin2x.cosx-sinx=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+2sinx.cos^2x-sinx=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sinx\left(2cos^2x-1\right)=0\)
\(\Leftrightarrow cos2x.cosx+2cos2x+sinx.cos2x=0\)
\(\Leftrightarrow cos2x\left(cosx+2+sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
giải phương trình: \(\sin2x+3\cos2x+8\sin x+14\cos x+11=0\)