Tính: 1 + 2 + 22+ 23 +...+ 22008
1 - 22009
B=1+2+22+23+...+22008/1-22009
Đặt A=1+2+22+...+220081+2+22+...+22008
=>2A=2.(1+2+22+...+220081+2+22+...+22008)
=>2A=2+22+23+...+220092+22+23+...+22009
=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)
=>A=22009−122009−1
=>A=(-1).(−2)2009(−2)2009+(-1).1
=>A=(-1).[(−2)2009+1][(−2)2009+1]
=>A=(-1).(1−22009)(1−22009)
=>1+2+22+...+220081+2+22+...+22008/1-2200922009
=
Giải:
Đặt A=1+2+22+23+...+22008
2A=2+22+23+24+...+22009
2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)
A =1-22009
Vậy B=1-22009/1-22009=1
Chúc bạn học tốt!
a) Tính M = 22010 - ( 22009 + 22008 + ..... + 21 + 20 )
b) So sánh: 2332 và 3223
Giúp vs
Bài 1. Tìm x biết
a) (x+3)3=640000
b) 275.3x=910
c) (1/33.9).3x=27
d) 85.4x=221
Bài 2. Tính
M=22010-(22009+22008+...+21+20)
Tính B=1+2+22+23+...+22008
1-22009
đấy là phân số nha
mình vô cùng cảm ơn ai giải hộ mình
Ta gọi tử của phân số B là A ta có:
A=1+2+2^2+2^3+...+2^2008
2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009
=>A=2^2009 - 1
A=-1 + 2^2009
ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)
Giải:
Ta gọi tử của phân số B là A ta có:
A=1+2+2^2+2^3+...+2^2008
2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009
=>A=2^2009 - 1=-1+2^2009
=>B=-1+2^2009/1-2^2009
Chúc bạn học tốt!
Tính: M = 22010 - (22009 + 22008 + ... + 21 + 20)
Đặt A = 22009 + 22008 + ... + 21 + 20. Khi đó, M = 22010 - A
Ta có 2A = 22010 + 22009 + ... + 22 + 21.
Suy ra 2A - A = 22010 - 20 = 22010 - 1.
Do đó M = 22010 - A = 22010 - (22010 - 1) = 22010 - 22010 + 1 = = 1.
M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
vậy M=1
Cho A = 1+21+22+233+...+22007
a)Tính 3A
b)Chứng minh : A = 22008--1
A \(=\)\(1+2^1+2^2+...+2^{2007}\)
⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)
2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )
A\(=\)\(2^{2008}-1\)
\(3A=3\left(2^{2008}-1\right)\)
\(=3.2^{2008}-3\)
Cho A = 1 + 2 + 2 2 + . . . + 2 2007 . Chứng minh: A = 2 2008 - 1
Cho A = 1 + 2 + 2 2 + . . . + 2 2007 . Chứng minh: A = 2 2008 - 1
A = 1 + 2 + 2 2 + . . . + 2 2007
2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008
A = 2A - A = ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) = 2 2008 - 1
Vậy A = 2 2008 - 1
Tính tổng sau :
A = 2 + 23 + 25 + 27 + 29 + ... + 22009
B = 1 + 22 + 24 + 26 + 28 + ... + 2200
C = 5 + 53 + 55 + 57 + ... + 5101
D = 13 + 133 + 135 + 137 + ... + 1399
Đặt A' = 23+25+27+.....+22009
Số số hạng của A' là : (22009 - 23) : 2 + 1 = 10994(số)
A' = (22009+23). 10994 : 2 = 22032. 5497 = 121109904
A = 2 + 121109904 = 121109906
Đặt B' = 22+24+26+....+2200
Số số hạng của B' là : (2200 - 22) : 2 + 1 = 1090(số)
B' = (2200 + 22) . 1090 : 2 = 2222. 545 = 1210990
B = 1 + 1210990 = 1210991
Đặt C' = 53 + 55 +57 +....+ 5101
Số số hạng của C' là :(5101 - 53) : 2 + 1 = 2525 (số)
C' = (53 + 5101) . 2525 : 2 = 6506925
C = 6506925 + 5 = 6506930
Đặt D' = 133+135+137+....+1399
Số số hạng của D' là : (1399 - 133) :2 + 1 = 634 (số)
D' = ( 133 + 1399) . 634 : 2 = 485644
D = 485644 + 13 = 485657
Cho A = 1 + 2 + 2 2 + . . . + 2 2009 + 2 2010 . Tìm số dư khi chia A cho 7
Ta có: A = 1 + 2 + 2 2 + . . . + 2 2009 + 2 2010
= 1 + 2 ( 1 + 2 + 2 2 ) + ... + 2 2008 ( 1 + 2 + 2 2 )
= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )
= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... + 2 2008 )
Mà 7 ( 2 + ... + 2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.