Đặt A=1+2+22+...+220081+2+22+...+22008
=>2A=2.(1+2+22+...+220081+2+22+...+22008)
=>2A=2+22+23+...+220092+22+23+...+22009
=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)
=>A=22009−122009−1
=>A=(-1).(−2)2009(−2)2009+(-1).1
=>A=(-1).[(−2)2009+1][(−2)2009+1]
=>A=(-1).(1−22009)(1−22009)
=>1+2+22+...+220081+2+22+...+22008/1-2200922009
=
Giải:
Đặt A=1+2+22+23+...+22008
2A=2+22+23+24+...+22009
2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)
A =1-22009
Vậy B=1-22009/1-22009=1
Chúc bạn học tốt!