chứng minh rằng: A= (7*82n+12*6n)chia hết cho 19
Chứng minh rằng với moi số nguyên dương n thì:
a) \(7^{n+2}+8^{2n+1}\) chia hết cho 19
b) \(n^4+6n^3+11n^2+6n\) chia hết cho 24
a) Với n=1 thì \(7^{^{ }3}+8^3\) chia hết cho \(7^2-56+8^2nên\) chia hết cho 19
Giả sử \(7^{k+2}+8^{k+2}\) chia hết cho 19 (k >_ 1)
Xét \(7^{k=3}+8^{2k+3}=7.7^{k+2}+64.8^{2k+1}=7.\left(7^{k+2}+8^{2k+1}\right)+57.8^{2k+1}\) chia hết cho 19
Muộn rồi b chiều tớ hứa là sẽ làm 4h30' chiều
b)Với n=1 thì 1+6+11+6 =24 chia hết cho 24
Giả sử \(k^4+6k^3+11k^2+6k\) chia hết cho 24 (k >_ 1)
Xét: \(\left(k+1\right)^4+6.\left(k+1\right)^3+11.\left(k+1\right)^2+6.\left(k+1\right)\)
=( \(k^4+6k^3+11k^2+6k\)) + 24.(\(k^2+1\))+4.\(\left(k^3+11k\right)\)
Ta thấy hai số hạng đầu chia hết cho 24.Phải chứng minh 4.\(\left(k^3+11k\right)\)chia hết cho 24,tức là chứng minh \(k^3+11k\) chia hết cho 6.Điều này được chứng minh một cách dễ dàng.
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
chứng minh rằng (22^6n+2+3) chia hết cho 19 với mọi n thuộc N
Lời giải:
$2^3\equiv -1\pmod 9$
$\Rightarrow 2^{6n}\equiv (-1)^{2n}\equiv 1\pmod 9$
$\Rightarrow 2^{6n+2}=2^{6n}.4\equiv 4\pmod 9$
$\Rightarrow 2^{6n+2}=9k+4$ với $k$ tự nhiên.
Vì $2^{6n+2}$ chẵn nên $9k$ chẵn $\Rightarrow k$ chẵn.
Khi đó:
\(2^{2^{6n+2}}+3=2^{9k+4}+3\)
$2^9\equiv -1\pmod {19}$
$\Rightarrow 2^{9k}\equiv (-1)^k\equiv 1\pmod {19}$ (do $k$ chẵn)
$\Rightarrow 2^{9k+4}\equiv 16\pmod {19}$
$\Rightarrow 2^{2^{6n+2}}+3=2^{9k+4}+3\equiv 16+3\equiv 19\equiv 0\pmod {19}$
Vậy $2^{2^{6n+2}}+3\vdots 19$
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng:
\(7*5^{2n} +12*6 chia hết cho 19\)
bài này dùng đồng dư nha bạn
mình nghĩ bạn chưa học đâu
thật ra mình cũng chưa học nhung nếu bạn thật sự tò mò hãy tra mạng nhé
chứng minh rằng: A = (7*52n + 12*6n) chia hết 19
giúp mik nhoa! tick cho
\(7\times5^{2n}+12\times6^n\)
\(=7\times25^n-7\times6^n+19\times6^n\)
\(=7\left(25^n-6^n\right)+19\times6^n\)
\(25^n-6^n⋮25-6=19\Rightarrow7\left(25^n-6^n\right)⋮19\)\(19\times6^n⋮19\)Vậy \(7\times5^{2n}+12\times6^n⋮19\)
Chúc bạn học tốt
chứng tỏ rằng với mọi m, n thuộc Z, nếu 5m +7n chia hết cho 19 thì 7m+6n cũng chia hết cho 19