Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm M(2 ; 1)
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và qua điểm M(2; 1).
Gọi đường tròn cần tìm là (C) có tâm I(a ; b) và bán kính bằng R.
(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|
(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|
⇒ |a| = |b|
⇒ a = b hoặc a = –b.
+ TH1: Xét a = b thì I(a; a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 – a)2 = a2
⇔ 4- 4a + a2 + 1 – 2a + a2 = a2
⇔ 2a2 – 6a + 5- a2 =0
⇔ a2 – 6a + 5 = 0
⇔ a = 1 hoặc a = 5.
* a = 1 ⇒ I(1; 1) và R = 1.
Ta có phương trình đường tròn (C): (x – 1)2 + (y – 1)2 = 1.
* a = 5 ⇒ I(5; 5), R = 5.
Ta có phương trình đường tròn (C) : (x – 5)2 + (y – 5)2 = 25.
+ TH2: Xét a = –b thì I(a; –a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 + a)2 = a2
⇔ 4 – 4a + a2 + 1+ 2a + a2 - a2 = 0
⇔ a2 – 2a + 5 = 0 (Phương trình vô nghiệm)
Vậy có hai đường tròn thỏa mãn là: (C): (x – 1)2 + (y – 1)2 = 1 hoặc (C) : (x – 5)2 + (y – 5)2 = 25.
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm \(A(4;2)\)
Gọi tâm của đường tròn là điểm \(I(a;b)\)
Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} ,d\left( {I,Ox} \right) = b,d\left( {I,Oy} \right) = a\)
Giải hệ phương trình \(\left\{ \begin{array}{l}d\left( {I,Ox} \right) = IA\\d\left( {I,Oy} \right) = IA\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \\a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \end{array} \right.\)
Thay \(a = b\) vào phương trình \(a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {b - 2} \right)}^2}} \) ta có:
\(\begin{array}{l}a = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {a - 2} \right)}^2}} \\ \Rightarrow {a^2} = {\left( {a - 4} \right)^2} + {\left( {a - 2} \right)^2}\\ \Rightarrow {a^2} - 12a + 20 = 0\\ \Rightarrow \left[ \begin{array}{l}a = 10\\a = 2\end{array} \right. \end{array}\)
Với \(a = b = 2\) ta có phương trình đường tròn (C) là: \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\)
Với \(a = b = 10\) ta có phương trình đường tròn (C) là: \({\left( {x - 10} \right)^2} + {\left( {y - 10} \right)^2} = 100\)
Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và đi qua điểm \(M\left(2;1\right)\) ?
Đường tròn tiếp xúc với hai trục tọa độ nên tâm I của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm M(2 ; 1), mà điểm M này lại là góc phần tư thứ nhất nên tọa độ của tâm I phải là số dương.
xI= yI > 0
gọi xI= yI = a. Như vậy phương trình đường tròn cần tìm là :
(2 - a)2 + (1 – a)2 = a2
a2 – 6a + 5 = 0 => a = 1 hoặc a = 5
Từ đây ta được hai đường tròn thỏa mãn điều kiện
+ Với a = 1 => (C1) => (x - 1 )2 + (y – 1)2 = 1
x2 + y2 - 2x – 2y + 1 = 0
+ Với a = 1 => (C2) => (x - 5 )2 + (y – 5)2 = 25
x2 + y2 - 10x – 10y + 25 = 0
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)
với tâm I(a;b) bán kính R
\(d\left(I,Ox\right)=\frac{\left|b\right|}{\sqrt{0^2+1^2}}=\left|b\right|\)
\(d\left(I,Oy\right)=\frac{\left|a\right|}{\sqrt{1^2}}=\left|a\right|\)
Do (C) tiếp xúc với Ox , Oy
\(\Rightarrow\left|a\right|=\left|b\right|=R\\ \Rightarrow a=\pm b\)
Lại có : (C) đi qua điểm có tọa độ (2;1)
\(\Rightarrow\left(2-a\right)^2+\left(1-b\right)^2=b^2\left(vìb^2=R^2\right)\\ \Rightarrow a^2-4a+4+b^2-2b+1=b^2\\ \Leftrightarrow a^2-4a-2b+5=0\left(1\right)\)
TH1: a = b thay vào (1) ta được :
\(\Rightarrow a^2-4a-2a+5=0\\ \Leftrightarrow a^2-6a+5=0\\ \Leftrightarrow a=1hoặca=5\)
với a =1 \(\Rightarrow\) b =1
\(\Rightarrow\left(C\right):\left(x-1\right)^2+\left(y-1\right)^2=1\)
với \(a=5\Rightarrow b=5\\ \Rightarrow\left(C\right):\left(x-5\right)^2+\left(y-5\right)^2=25\)
TH2 : a = -b thay vào (1) ta được :
\(a^2-4a+2b+5=0\\ \Leftrightarrow a^2-2a+5=0\left(VôNgiệm\right)\)
Vậy có 2 đường tròn (C) cần tìm ở trên
b)
Gọi đường tròn cần tìm có dạng (C): \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\) với tâm I (a;b), bán kính R
Do (C) đi qua 2 điểm (1;1) , (1;4) nên ta có :
\(\begin{cases}\left(1-a\right)^2+\left(1-b\right)^2=R^2\left(1\right)\\\left(1-a\right)^2+\left(4-b\right)^2=R^2\end{cases}\)
\(\Rightarrow\left(1-b\right)^2=\left(4-b\right)^2\\ \Rightarrow b=\frac{5}{2}\)
Lại có : (C) tiếp xúc với Ox
\(d\left(I,Ox\right)=\left|b\right|=R\\ \Rightarrow R=\frac{5}{2}\)
Thay \(b=R=\frac{5}{2}\) vào (1)ta được :
\(\left(1-a\right)^2+\left(1-\frac{5}{2}\right)^2=\frac{25}{4}\\ \Leftrightarrow a^2-2a-3=0\\ \Leftrightarrow a=-1hoặca=3\)
với \(\begin{cases}a=-1\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x+1\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
với \(\begin{cases}a=3\\b=R=\frac{5}{2}\end{cases}\) \(\Rightarrow\left(C\right):\left(x-3\right)^2+\left(y-\frac{5}{2}\right)^2=\frac{25}{4}\)
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
Gọi I(a,b) là tâm của đường tròn
vì đường tròn tiếp xúc với 2 trục tọa độ nên tâm I nằm trên 1 trong các tia phân giác của các trục, nói cách khác là I cách đều hai trục tọa độ => |a| = |b|
nhận xét: đường tròn tiếp xúc với 2 trục tọa độ nên cả hình tròn nằm trong 1 trong 4 góc của hệ trục, lại có A(2, -1) thuộc phần tư thứ IV => tâm I thuộc phần tư thứ IV => a > 0, b < 0
như vậy tọa độ tâm là I(a, -a), bán kính R = a, với a > 0
ptrình đường tròn: (x-a)² + (y+a)² = a²
A(2, -1) thuộc đtròn <=> (2-a)² + (-1+a)² = a² <=> a² - 6a + 5 = 0 <=> a = 1 hoặc a = 5
Vậy có 2 đường tròn thỏa yêu cầu là: (x-1)² + (y+1)² = 1 hoặc (x-5)² + (y-5)² = 25
bn ơi , điểm có tọa độ là (2,1) mà bn , nhầm rùi kìa
Bạn ơi,tại bạn này chép lời giải trên mạng nên chưa kịp sửa.