Đường tròn tiếp xúc với hai trục tọa độ nên tâm I của nó phải cách đều hai trục tọa độ. Đường tròn này lại đi qua điểm M(2 ; 1), mà điểm M này lại là góc phần tư thứ nhất nên tọa độ của tâm I phải là số dương.
xI= yI > 0
gọi xI= yI = a. Như vậy phương trình đường tròn cần tìm là :
(2 - a)2 + (1 – a)2 = a2
a2 – 6a + 5 = 0 => a = 1 hoặc a = 5
Từ đây ta được hai đường tròn thỏa mãn điều kiện
+ Với a = 1 => (C1) => (x - 1 )2 + (y – 1)2 = 1
x2 + y2 - 2x – 2y + 1 = 0
+ Với a = 1 => (C2) => (x - 5 )2 + (y – 5)2 = 25
x2 + y2 - 10x – 10y + 25 = 0