Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xin gam
Xem chi tiết
Yuri
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 15:05

\(\Leftrightarrow2cos^2x-1+2cosx-\left(\dfrac{1}{2}-\dfrac{1}{2}cosx\right)=0\)

\(\Leftrightarrow2cos^2x+\dfrac{5}{2}cosx-\dfrac{3}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{-5+\sqrt{73}}{8}\\cosx=\dfrac{-5-\sqrt{73}}{8}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x=\pm arccos\left(\dfrac{-5+\sqrt{73}}{8}\right)+k2\pi\)

xin gam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
17 tháng 5 2017 lúc 17:03

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Nguyễn Quốc Việt
Xem chi tiết
Le Minh Hoang
Xem chi tiết
M Thiện Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 7 2021 lúc 14:38

1a.

Đặt \(5x+6=u\)

\(cos2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow1-2sin^2u+4\sqrt{2}sinu-4=0\)

\(\Leftrightarrow2sin^2u-4\sqrt{2}sinu+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=\dfrac{3\sqrt{2}}{2}>1\left(loại\right)\\sinu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow sin\left(5x+6\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+6=\dfrac{\pi}{4}+k2\pi\\5x+6=\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{6}{5}+\dfrac{\pi}{20}+\dfrac{k2\pi}{5}\\x=-\dfrac{6}{5}+\dfrac{3\pi}{20}+\dfrac{k2\pi}{5}\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 7 2021 lúc 14:40

1b.

Đặt \(2x+1=u\)

\(cos2u+3sinu=2\)

\(\Leftrightarrow1-2sin^2u+3sinu=2\)

\(\Leftrightarrow2sin^2u-3sinu+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=1\\sinu=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(2x+1\right)=1\\sin\left(2x+1\right)=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{\pi}{2}+k2\pi\\2x+1=\dfrac{\pi}{6}+k2\pi\\2x+1=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}+\dfrac{\pi}{4}+k\pi\\x=-\dfrac{1}{2}+\dfrac{\pi}{12}+k\pi\\x=-\dfrac{1}{2}+\dfrac{5\pi}{12}+k\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
28 tháng 7 2021 lúc 14:42

2a.

\(cos^2x-sin^2x+sin^2x+2cosx+1=0\)

\(\Leftrightarrow cos^2x+2cosx+1=0\)

\(\Leftrightarrow\left(cosx+1\right)^2=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2017 lúc 5:39

Đáp án A

Giải phương trình lượng giác sau đó kết hợp vào điều kiện của đầu bài để tìm ra nghiệm thỏa mãn.

Mà k ∈ ℤ  nên không có giá trị k nào thỏa mãn.

Sai lm và chú ý: Đối với những bài toán giải phương trình lượng giác thỏa mãn điều kiện cho trước, ta cần tìm được x sau đó cho x thỏa mãn điều kiện đầu bài và cô lập được k khi đó ta sẽ tìm được giá trị nguyên k thỏa mãn và sẽ tìm đc x.

quangduy
Xem chi tiết
Nguyễn Linh Chi
4 tháng 6 2019 lúc 16:52

Các bước biến đổi. Bạn tự tìm kết quả nhé!

1) \(\left(\sin x-\cos x\right)\left(\cos^2x+\cos x.\sin x+\sin^2x\right)+\cos^2x-\sin^2x=0\)

<=> \(\left(\sin x-\cos x\right)\left(1+\cos x.\sin x\right)+\left(\cos x-\sin x\right)\left(\cos x+\sin x\right)=0\)

<=> \(\left(\sin x-\cos x\right)\left(\cos x+1\right)\left(\sin x+1\right)=0\)

2) \(\left(\sin^3x-2\sin^5x\right)-\left(2\cos^5x-\cos^3x\right)=0\)

<=> \(\sin^3x\left(1-2\sin^2x\right)-\cos^3x\left(2\cos^2x-1\right)=0\)

<=> \(\sin^3x.\cos2x-\cos^3x.\cos2x=0\)

<=> \(\cos2x\left(\sin^3x-\cos^3x\right)=0\)

3) ĐK: x\(\ne\frac{\pi}{2}+k\pi\)

\(\cos x\left(3.\tan x+2\right)-\left(3\tan x+2\right)=0\)

<=> \(\left(\cos x-1\right)\left(3.\tan x+2\right)=0\)