Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiền Trang
Xem chi tiết
Nguyễn Tuấn
16 tháng 3 2016 lúc 21:35

vì với mọi số a,b,c thì ta cũng có biểu thức đó luôn đúng nên thay giá trị vô đúng là dc

Nhi Ngải Thiên
Xem chi tiết
2611
27 tháng 4 2022 lúc 20:47

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

Đức Lộc Bùi
Xem chi tiết
Nguyễn Hữu Lâm
1 tháng 2 2021 lúc 23:10
Ba bc bb cc ca cb
Khách vãng lai đã xóa
tran van
Xem chi tiết
vũ tiền châu
15 tháng 2 2018 lúc 12:42

cái nàyt nghĩ chỉ có cách quy đồng rồi chứng minh BĐT luôn đúng thôi bạn!

^_^

Võ Ngọc Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 0:43

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b)-3bca

=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

doraemon
Xem chi tiết
Xyz OLM
28 tháng 3 2022 lúc 17:52

Ta có (ab + bc + ca)2 = (ab)2 + (bc2) + (ca)2 + 2abc(a + b + c)

Lại có : x2 +y2 + z2 \(\ge\)xy + yz + xz

Thật vậy  x2 +y2 + z2 \(\ge\)xy + yz + xz

<=> 2(x2 +y2 + z2\(\ge\)2(xy + yz + xz)

<=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (z2 - 2zx + x2\(\ge0\)

<=> (x - y)2 + (z - x)2 + (y - z)2 \(\ge0\) (đúng) => ĐPCM

Áp dụng bài toán => (ab)2 + (bc)2 + (ca)2 \(\ge\)ab.bc + ac.bc + ab.ac = abc(a + b + c) 

Khi đó (ab + bc + ca)2 = (ab)2 + (bc2) + (ca)2 + 2abc(a + b + c) \(\ge\)abc(a + b + c) + 2abc(a + b + c) = 3abc(a + b + c) (đpcm) 

Khách vãng lai đã xóa
Lê Song Phương
28 tháng 3 2022 lúc 18:21

Bạn vào thống kê hỏi đáp của mình xem nhé.

Khách vãng lai đã xóa

\(( a b + b c + a c ) ^2 ≥ 3 a b c ( a + b + c )\)

Biến đổi tương đương, ta được:

\(<=> ( a b ) ^2 + ( b c ) ^2 + ( a c ) ^2 + 2 a b . b c + 2 b c . a c + 2 a c . a b − 3 a b . a c − 3 a b . b c − 3 a c . b c ≥ 0\)

\(<=> ( a b ) ^2 + ( b c ) ^2 + ( a c ) ^2 − a b . a c − a b . b c − a c . b c ≥ 0\)

\(<=> \frac{1}{2} . [ ( a b ) 2 − 2 a b . b c + ( b c ) 2 ] + \frac{1}{2} . [ ( b c ) 2 − 2 b c . a c + ( a c ) 2 ] + \frac{1}{2} .[ ( a c ) ^2 − 2 a c . a b + ( a b ) ^2 ] ≥ 0\)

\(<=> 1 2 . ( a b − b c ) ^2 + 1 2 . ( b c − a c ) ^2 + 1 2 . ( a c − a b ) ^2 ≥ 0 \)(Luôn đúng)

Dấu bằng xảy ra khi: \(a b = b c = a c\)

Ý tưởng của bài toán dựa trên bổ đề phụ:\(( x + y + z ) ^2 ≥ 3 ( x y + y z + x z )\)

Nếu bạn đặt \(a b = x , b c = y , a c = z\)cho bài toán thì sẽ đưa về bổ đề phụ trên

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 2 2017 lúc 10:55

Đặt A = a + b, B = c. Áp dụng hằng đẳng thức ( A   +   B ) 3  để biến đổi vế trái.

Giang Nguyễn Hương
Xem chi tiết
pham trung thanh
12 tháng 11 2017 lúc 9:40

Chứng minh bđt phụ :

Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)với \(\forall x;y;z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(*)

Áp dụng bđt (*), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)(1)

Lại có :\(a^2b^2+b^2c^2+c^2a^2\ge abbc+bcca+caab=abc\left(a+b+c\right)\)(2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Dấu = xảy ra khi a=b=c     

Vậy \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Phần dấu = xảy ra không biết bạn có cần không nhưng thầy mình bảo phải ghi vào mới được điểm tối đa

Vương Hoàng Minh
Xem chi tiết