cho tam giác cân DEF (DE=DF) trên cạnh EF lấy 2 điểm I,K sao cho EI=KF Chứng minh DI=DK
cho tam giac DEF cân tại D.trên cạnh DE,DF lấy K;H sao cho DK=dh.gọi i là giao điểm của eh và fk.chứng minh a,tam giác ìe cân tại i b,i cách đều 2 cạnh de và df c,di đi qua trung điểm của ef và vuông góc với ef
cho tam giác DEF( DE = DF) I, K nằm trên đoạn thẳng EF ( EI=FK). chứng minh DI=DK
Cho tam giác DEF : DE = 4cm ; DF = 2cm. Trên cạnh DE lấy điểm H sao cho DH = 3cm. Trên cạnh DF lấy điểm I sao cho DI = 1,5 cm. Chứng minh HI // EF
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Cho tam giác DEF vuông tại D (DE < DF). Kẻ tia phân giác của góc DEF cắt DF tại A. Trên cạnh EF lấy điểm B sao cho: EB = ED. 1) Chứng minh rằng: ∆EDA = ∆EBA; 2) Gọi giao điểm của DB và EA là I. Hỏi I có là trung điểm của DB không? Vì sao? 3) Kéo dài BA cắt ED tại K. Chứng minh: DK = BF và DB // KF.
Moị người giúp em với ạ
🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲🐲
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.
Cho tam giác DEF có DE<DF. Gọi M là trung điểm của EF. Trên tia đối của tia DM lấy điểm K sao cho MD=MK. a/ Chứng minh tam giác DEM= tam giác KFM.Từ đó chứng minh DE//KF. b/ Kẻ DH vuông góc với EF. Trên tia DH lấy điểm P sao cho HD=HP. Chứng minh EF là tia phân giác của góc DEP
Vẽ hình giúp mình với nhé mình cảm ơn nhiều
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
Bài 1:
Cho tam giác DEF nhọn. DE<DF, lấy M thuộc cạnh DE, N thuộc cạnh DF sao cho MN//EF. Cho biết DM=2cm, DN=3,5cm. Tính NF.
Bài 2:
Cho tam giác DEF nhọn, DE<DF. Lấy K thuộc cạnh DE, I thuộc cạnh DF sao cho KI//EF. Cho biết DK=3cm, KE=1cm, DI=4,2cm. Tính IF.
1) tam giác DEF có MN//EF
=> \(\frac{DM}{ME}=\frac{DN}{NF}=>\frac{2}{2}=\frac{3,5}{NF}=>NF=\frac{3,5.2}{2}=3,5cm\)
2)tam giasc DEF cos KI//EF
=>\(\frac{DK}{KE}=\frac{DI}{IF}=\frac{3}{1}=\frac{4,2}{IF}=IF=\frac{1.4,2}{3}=1,4cm\)