CMR:
\( {a\over b+c}+ {b\over c+a}+{a\over c+b} \geq {3\over 2}\)
giải hộ mình nha
Cho a,b,c >0 . C/m:\(ab + bc +ca \geq {{ a^3 \over b} + {b^3 \over c} + {c^3 \over a}}\)
Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:
\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)
Bài 2: Chứng minh rằng với mọi số thực x,y ta có:
\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)
Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:
\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)
Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)
Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)
Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)
Bài 7: Chứng minh rằng với mọi số thực a,b ta có:
\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)
Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:
\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)
Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:
\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)
Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:
\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)
Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:
\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)
@Akai Haruma
Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy
⇒ x2 + y2 ≥ 2xy
⇔ \(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2
⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)
CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2
⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ \(6\) ( 2)
Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))
Đẳng thức xảy ra khi : x = y
Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )
Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )
Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )
Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)
Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)
Đẳng thức xảy ra khi a = b = 4
Thành Trương: bạn có thể gõ cụ thể công thức ra được không?
cho a,b,c>0. cm:
\({1 \over 1 - 2ab} + {1 \over a} + {1 \over b} \geq 6\)
Cho a,b,c là các số thực và \(x = ({a \over b-c})^2 + ({b \over c-a})^2 + ({c \over a-b})^2 =<2\)
CM:\( \sqrt{({b-c\over a})^2 + ({c-a\over b})^2 + ({a-b\over c})^2}=|{b-c\over a} + {c-a\over b} + {a-b\over c}|\)
"=<" là bé hơn hoặc bằng
Cho a,b,c và \(({a \over b-c})^2+({b \over c-a})^2+({c \over a-b})^2=<2\)
CM: \(\sqrt{({b-c\over a})^2+({c-a\over b})^2+({a-b\over c})^2}=/{b-c\over a}+{c-a\over b}+{a-b\over c}/\)
"/" ở đây là giá trị tuyệt đối
"=<" là bé hơn hoặc bằng.
\({Cho} :{a\over b}={b\over c}={c\over d}={d\over a}. Tính :{ab-3bc+ca\over a^{2}-b^{2}+c^{2}}. \)
Ở đây không có đk a+b+c+d khác không nhé
TH khác không mk giải đc r
Các bạn giúp mk giải TH a+b+c+d=0 vs
cho ba số abc thỏa mãn \({a\over b+c} + {b\over a+c} + {c\over b+a} = 1\)chứng minh \({a^2\over b+c} + {b^2\over a+c} + {c^2\over b+a} = 0\)
Cho a, b, c khác 0 € Q. a+b+c=0. Cmr:
\(\sqrt{{1\over a^2}+{1\over b^2}+{1\over c^2}}\) là số hữu tỉ
Cho a,b,c,d >0 .
.cmr:\({a \over b+c+d}\)+\( {b \over c+d+a}\)+\( {c \over d+a+b}\)+\( {d\over a+b+c}\) >4/3
đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)
→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)
thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)
→\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)
áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)
s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)
s>=16/3-4→s>=\(\frac{4}{3}\)
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)