Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uzumaki Nagato

Cho a,b,c,d >0 .

.cmr:\({a \over b+c+d}\)+\( {b \over c+d+a}\)+\( {c \over d+a+b}\)+\( {d\over a+b+c}\) >4/3

Neet
25 tháng 8 2016 lúc 21:04

đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)

→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)

thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)

\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)

áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)

s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)

s>=16/3-4→s>=\(\frac{4}{3}\)

Lightning Farron
25 tháng 8 2016 lúc 17:21

\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)


Các câu hỏi tương tự
kinomoto sakura
Xem chi tiết
Phạm Minh Tuấn
Xem chi tiết
Linh Nhi
Xem chi tiết
Lee Je Yoon
Xem chi tiết
le vi dai
Xem chi tiết
Mưa Bong Bóng
Xem chi tiết
미국투이
Xem chi tiết
Xuân Bách
Xem chi tiết
katherina
Xem chi tiết