Cho tứ giác ABCD có BD và CA cắt nhau tại M . Cm (AB+BC+CD+DA ):2 < MA+MB+MC+MD < AB+BC+CD+DA
Cho tứ giác ABCD và một điểm M thuộc miền trong của tứ giác . Chứng minh BĐT :
a) MA + MB + MC + MD >= 1/2 *(AB+BC+CD+DA)
b) MA+MB+MC+MD >= AC+BD. Dấu "=" xảy ra khi nào?
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
cho tứ giác ABCD và điểm M thuộc đường trong của tứ giác
Chứng minh : a) MA+MB+MC+MD > AB+CD
b) MA+MB+MC+MD \(\ge\dfrac{AB+BC+CD+DA}{2}\)
Hình bạn tự vẽ nhé.
a) Theo bất đẳng thức tam giác:
MA+MB> AB (1)
MC+MD>CD (2)
=> MA +MB +MC +MD >AB +CD
b) Theo BĐT tam giác:
MA+MD > AD (3)
MB +MC >BC (4)
(1)(2)(3)(4) => 2(MA +MB+MC+MD)>AB +BC +CD +AD
MA +MB +MC +MD>AB +BC +CD +AD /2
Mình không nghĩ là dấu≥ vì bất đẳng thức tam giác đâu có dấu bằng đâu nhỉ?
1)Cho hình bình hành ABCD tâm o.Chứng minh:
a)AB-BC=DB
b)DA-DB+DC=VECTO KHÔNG
c)DA-DB=OD-OC
d) CO-OB=BA
e) MA+MC=MB+MD
f) MA+MB+MC+MD=4MD
g) BA+BC+OB=OD
h) AB+OD+OC=AC
2)Cho ngũ giác ABCDE.Chứng minh:
a) AB+BC+CD=AE-DE
b)AB+BC+CD+DA=VECTO KHÔNG
c) DA-CA=DB-CB
d)AC+DA+BD=AD-CD+BA
2)
a)\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{AE}-\overrightarrow{DE}\Leftrightarrow\overrightarrow{AD}=\overrightarrow{AE}+\overrightarrow{ED}\Leftrightarrow\overrightarrow{AD}=\overrightarrow{AD}\)
b)
\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AA}=\overrightarrow{0}\)
c)
\(\overrightarrow{DA}-\overrightarrow{CA}=\overrightarrow{DB}-\overrightarrow{CB}\Leftrightarrow\overrightarrow{DA}+\overrightarrow{AC}=\overrightarrow{DB}+\overrightarrow{BC}\Leftrightarrow\overrightarrow{DC}=\overrightarrow{DC}\)
d)\(\overrightarrow{AC}+\overrightarrow{DA}+\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{CD}+\overrightarrow{BA}\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DA}-\overrightarrow{BA}+\overrightarrow{BD}-\overrightarrow{AD}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DA}+\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{DA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AA}=\overrightarrow{0}\)
Cho hình thang ABCD (AB // CD) và AB < CD. Đường thẳng song song với đáy AB cắt các cạnh bên AD , BC theo thứ tự tại M, N. Chứng minh rằng: a) MA NB AD BC = b) MA NB MD NC = c) MD NC DA CB = Hướng dẫn: Kéo dài các tia DA và CB cắt nhau tại E, áp dụng định lý Ta – lét trong tam giác và tính chất tỉ lệ thức để chứng minh
giúp mik với thanks nhiều nha:))
cho tứ giác lồi ABCD . CM vecto AB+CD= vecto AD+BC
AB-CD=AC-BD
b) E,F,O lll trung điểm AB,CD,EF.CM vecto OA+OB+OC+OD=0
c) M bất kì cmr vecto MA+MB+MC+MD=4MO
d) giả sử 2 dg chéo AC,BD cắt nhau tại I cho vecto IA+IB+IC+ID=0.CM ABCD là hình bình hành
Bài 1: Cho tứ giác ABCD có AC=p, BD=q và M là 1 điểm thay đổi, nằm trong tứ giác. Gọi s=MA +MB+MC+MD. Xác định vị trí M để s đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Bài 2: Cho hình thang ABCD có 2 đáy là AB và CD. I là trung điểm của BC và \(\widehat{AID}\)= 90. CM DI là tia phân giác của \(\widehat{D}\)
Bài 3: Cho hình thang ABCD có đáy AB, CD và AD+BC=CD. CM các tia phân giác của \(\widehat{A}\) và \(\widehat{B}\) cắt nhau tại 1 điểm thuộc cạnh CD
Cho 2 hình bình hành hình ABCD (tâm O) và ABEF và EH = FG = AD . Chứng minh
1.
DA - DB + DC = 0
2.
MA + MC = MB + MD (M là điểm tùy ý)
3.
OA + OB + OC + OD = AB + DA + CD + BC
4. Tứ giác CDGH là bình hành
Cho tứ giác ABCD có AC và BD cắt nhau tại trung điểm O của mỗi đoạn. Cho biết AB = BC = CD = DA. Hỏi trên hình vẽ có bao nhiêu cặp tam giác bằng nhau?
Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc tại O
a. Chứng minh\(AB^{2} + CD^{2} = BC^{2} + AD^{2}
\)
b. Lấy các điểm M, N, P, Q thứ tự là trung điểm của AB, AC, CD, DA. Chứng Minh OM+ON+OQ=\(\dfrac{1}{2}\) (AB+BC+CD+DA)
a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:
Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.
\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)