Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiên An
Xem chi tiết
Nguyễn Minh Hằng
23 tháng 1 2016 lúc 10:59

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

Phạm Phương Anh
23 tháng 1 2016 lúc 11:07

oe

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
20 tháng 1 2016 lúc 11:03

Biến đổi : 

\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)

         = \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)

Đồng nhất hệ số hai tử số : 

\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)

\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)

Khi đó :

\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)

\(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)

Do vậy : 

\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)

=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)

Với 

\(J=\int\frac{dx}{2\sin x-\cos x+1}\)

Phạm Thái Dương
Xem chi tiết
Nguyễn Hòa Bình
20 tháng 1 2016 lúc 11:44

Biến đổi :

\(4\sin^2x+1=5\sin^2x+\cos^2x=\left(a\sin x+b\cos x\right)\left(\sqrt{3}\sin x+\cos x\right)+c\left(\sin^2x+\cos^2x\right)\)

\(=\left(a\sqrt{3}+c\right)\sin^2x+\left(a+b\sqrt{3}\right)\sin x.\cos x+\left(b+c\right)\cos^2x\)

Đồng nhấtheej số hai tử số 

\(\begin{cases}a\sqrt{3}+c=5\\a+b\sqrt{3}=0\\b+c=1\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}a=\sqrt{3}\\b=-1\\c=2\end{cases}\)

Nguyễn Trọng Nghĩa
Xem chi tiết
Bắc Băng Dương
23 tháng 1 2016 lúc 14:38

a) \(f\left(x\right)=\sin^3x.\sin3x=\sin3x\left(\frac{3\sin x-\sin3x}{4}\right)=\frac{3}{4}\sin3x.\sin x-\frac{1}{4}\sin^23x\)

          = \(\frac{3}{8}\left(\cos2x-\cos4x\right)-\frac{1}{8}\left(1-\cos6x\right)=\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\)

Do đó : 

\(I=\int f\left(x\right)dx=\int\left(\frac{3}{8}\cos2x+\frac{1}{8}\cos6x-\frac{3}{8}\cos4x-\frac{1}{8}\right)dx=\frac{3}{16}\sin2x+\frac{1}{48}\sin6x-\frac{3}{32}\sin4x-\frac{1}{8}x+C\)

Bắc Băng Dương
23 tháng 1 2016 lúc 15:46

b) Ta biến đổi :

\(f\left(x\right)=\sin^3x.\cos3x+\cos^3x.\sin3x=\cos3x\left(\frac{3\sin x-\sin3x}{4}\right)+\sin3x\left(\frac{\cos3x+3\cos x}{4}\right)\)

\(=\frac{3}{4}\left(\cos3x\sin x+\sin3x\cos x\right)=\frac{3}{4}\sin4x\)

Do đó : \(I=\int f\left(x\right)dx=\frac{3}{4}\int\sin4xdx=-\frac{3}{16}\cos4x+C\)

Guyo
Xem chi tiết
Nguyễn Văn Toàn
23 tháng 1 2016 lúc 11:37

Hỏi đáp Toán

Mai Linh
23 tháng 1 2016 lúc 9:52

Ta có :

\(f\left(x\right)=\int\frac{dx}{\sqrt{3}\sin x+\cos x}=\frac{1}{2}\int\frac{dx}{\frac{\sqrt{3}}{2}\sin x+\frac{1}{2}\cos x}=\frac{1}{2}\int\frac{dx}{\sin\left(x+\frac{\pi}{6}\right)}\)

\(=\int\frac{dx}{2\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\cos^2\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\int\frac{dx}{\sin\left(\frac{x}{2}+\frac{\pi}{12}\right)\cos\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\int\frac{d\left(\tan\frac{x}{2}+\frac{\pi}{12}\right)}{\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)}=\ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{12}\right)\right|+C\)

cong chua yumi
23 tháng 1 2016 lúc 9:56

leuleuko biết

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:16

\(\int sin^2x.cos^2xdx=\dfrac{1}{4}\int sin^22xdx=\dfrac{1}{8}\int\left(1-cos4x\right)dx\)

\(=\dfrac{1}{8}x-\dfrac{1}{32}sin4x+C\)

AllesKlar
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2022 lúc 21:36

Chọn B

聪明的 ( boy lạnh lùng )
14 tháng 4 2022 lúc 21:36

B

anime khắc nguyệt
14 tháng 4 2022 lúc 21:37

B

Thiên An
Xem chi tiết
Bắc Băng Dương
23 tháng 1 2016 lúc 9:29

Ta biến đổi f(x) về dạng : 

\(f\left(x\right)=\frac{\sin x.\sin\left(x+\frac{\pi}{4}\right)+\cos x.\cos\left(x+\frac{\pi}{4}\right)}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1=\frac{\cos\frac{\pi}{4}}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}-1\)

\(\Rightarrow F\left(x\right)=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-\int dx=\frac{\sqrt{2}}{2}\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx-x\left(1\right)\)

Để tính \(J=\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx\)

Ta có \(\int\frac{dx}{\cos x.\cos\left(x+\frac{\pi}{4}\right)}dx=\sqrt{2}\int\frac{1}{\cos x.\left(\cos x-\sin x\right)}dx=\sqrt{2}\int\frac{1}{\left(1-\tan x\right)}.\frac{1}{\cos^2x}dx\)

\(=-\sqrt{2}\int\frac{d\left(1-\tan x\right)}{1-\tan x}=\sqrt{2}\ln\left|1-\tan x\right|+C\)

Võ Thị Hoài Linh
Xem chi tiết
Huỳnh Thị Đông Thi
20 tháng 3 2016 lúc 21:31

Một trong các nguyên hàm của hàm số \(f\left(x\right)=\cos x+\sin x\) là hàm số \(\sin x-\cos x\) . Từ định lí nếu hàm số f(x) có nguyên hàm F(x) trên khoảng (a,b) thì trên khoảng đó nó có vô số nguyên hàm và hai nguyên hàm bất kì của cùng một hàm cho trên khoảng (a,b) là sai khác nhau một hằng số cộng. suy ra mọi nguyên hàm số đã cho đều có dạng \(F\left(x\right)=\sin x-\cos x+C\), trong đó C là hằng số nào đó. 

Để xác định hằng số C ta sử dụng điều kiện F(0)=1

Từ điều kiện này và biểu thức F(x) ta có :

\(\sin0-\cos0+C=1\Rightarrow C=1+\cos0=2\)

Do đó hàm số \(F\left(x\right)=\sin x-\cos x+2\) là nguyên hàm cần tìm