cho a,b,c>0 thỏa a+b+c=3
chứng minh $\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1$a3b(2c+a) +b3c(2a+b) +c3a(2b+c) ≥1
Cho a,b,c>0 thỏa mãn \(a+b+c\le3\)
Chứng minh \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}+\frac{1}{\left(2b+c\right)\left(2a+c\right)}+\frac{1}{\left(2c+a\right)\left(2b+a\right)}\ge\frac{3}{\left(a+b+c\right)^2}\)
moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau
vd: A={xeN/3<x<9}
thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung
co sua nhu vay A=3,4,5,6,7,8
ko biet hay sai mong ae giup minh
Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)
=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)
=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)
Mấy cái kia làm tương tự cậu nhé
Dấu "=" xảy ra khi và chỉ khi a=b=c=1
cho a,b,c>0 thỏa a+b+c=3
chứng minh \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1\)
\(\frac{a^3}{b\left(2c+a\right)}+\frac{b}{3}+\frac{2c+a}{9}\ge3\sqrt[3]{\frac{a^3}{b\left(2c+a\right)}\cdot\frac{b}{3}\cdot\frac{2c+a}{9}}=3\cdot\frac{1}{3}a=a\)
CM tương tự với hai cái còn lại
\(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}+\frac{a+b+c}{3}+\frac{\left(a+b+c\right)}{3}\ge a+b+c\)
<=> \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge\frac{1}{3}\left(a+b+c\right)=\frac{1}{3}\cdot3=1\)
Dấu = xảy ra khi a = b= c = 1
cho a;b;c là các số thực đôi một khác nhau thỏa mãn
\(3+\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}=\)\(\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}\)
Cho các số thực a, b, c > 0. Chứng minh rằng :
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\ge\frac{1}{3}\)
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
(Vào thống kê hỏi đáp xem ảnh nhé! 2 cách, cách đầu dùng kỹ thuật uvw, cách kia là SOS)
Cho a,b,c là 3 số thực đôi một phân biệt. CMR:
\(3+\frac{\left(2a+b\right)\left(2b+c\right)}{\left(a-b\right)\left(b-c\right)}+\frac{\left(2b+c\right)\left(2c+a\right)}{\left(b-c\right)\left(c-a\right)}+\frac{\left(2c+a\right)\left(2a+b\right)}{\left(c-a\right)\left(a-b\right)}=\frac{2a+b}{a-b}+\frac{2b+c}{b-c}+\frac{2c+a}{c-a}\)
\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}+\frac{c^2a^3}{b^2+\left(c+a\right)^3}+\frac{a^2b^3}{c^2+\left(a+b\right)^3}\ge\frac{9abc}{4\left(3abc+a^2c+b^2a+c^2b\right)}\)voi a,b,c>0
Cho a,b,c dương thỏa mãn điều kiện \(a^2b^2c^2+\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge a+b+c+ab+bc+ca+3\)
Tìm GTNN của biểu thức:
\(P=\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}\)
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
đây\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Cho a, b, c > 0. Chứng minh rằng: \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho \(a=b=c\)
\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)
\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)
\(\Leftrightarrow2\ge2\) ( Đúng)
\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)