Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 11 2023 lúc 14:46

Xét (O) có

CA,CM là tiếp tuyến

Do đó: OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)

=>\(2\cdot\widehat{DOC}=180^0\)

=>\(\widehat{DOC}=90^0\)

=>ΔDOC vuông tại O

Gọi N là trung điểm của CD

ΔOCD vuông tại O

=>ΔOCD nội tiếp đường tròn đường kính CD

mà N là trung điểm của CD

nên ΔOCD nội tiếp (N)

Xét hình thang ACDB có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ACDB

=>ON//AC//BD

=>ON\(\perp\)AB tại O

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó:AB là tiếp tuyến của (N)

=>Đường tròn đường kính CD tiếp xúc với AB

pansak9
Xem chi tiết
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2023 lúc 14:08

a:

Đặt OA=R

Gọi I là tâm của đường tròn đường kính OA

=>IO=IA=r

OI+IA=OA

=>OI=OA-IA

=>OI=R-r

=>(O;OA) và (I;IA) là đường tròn tiếp xúc nhau tại A

b: Xét (I) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>OC\(\perp\)CA tại C

=>OC\(\perp\)AD tại C

ΔOAD cân tại O

mà OC là đường cao

nên C là trung điểm của AD

=>CA=CD

Đàm Tùng Vận
Xem chi tiết
pansak9
Xem chi tiết
Alice
17 tháng 11 2023 lúc 20:40

loading...

Nguyễn Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 3 2023 lúc 20:32

a: Vì góc AKB=góc AHB=90 độ

=>AKHB nội tiếp

b: góc FBC=góc HAC=góc EBC

=>BH là phân giác của góc EBI

Lí Hoàng Linh
Xem chi tiết
Lí Hoàng Linh
28 tháng 11 2019 lúc 15:36

AME=BMF=30 nha

Khách vãng lai đã xóa
Tung
Xem chi tiết
pansak9
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 11 2023 lúc 22:38

a: Gọi giao điểm của CO với BD là K

Xét ΔOAC vuông tại A và ΔOBK vuông tại B có

OA=OB

\(\widehat{AOC}=\widehat{BOK}\)

Do đó: ΔOAC=ΔOBK

=>OC=OK và \(\widehat{ACO}=\widehat{BKO}\)

=>\(\widehat{ACO}=\widehat{DKC}\)(1)

OC=OK

K,O,C thẳng hàng

Do đó: O là trung điểm của KC

Xét ΔDCK có

DO là đường cao

DO là đường trung tuyến

Do đó: ΔDCK cân tại D

=>\(\widehat{DCK}=\widehat{DKC}\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{ACO}=\widehat{HCO}\)

Xét ΔCAO vuông tại A và ΔCHO vuông tại H có

CO chung

\(\widehat{ACO}=\widehat{HCO}\)

Do đó: ΔCAO=ΔCHO

=>OA=OH=R

=>H thuộc (O)

b: Xét (O) có

OH là bán kính

CD\(\perp\)OH tại H

Do đó: CD là tiếp tuyến của (O)