Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Anh
Xem chi tiết
ly kim
Xem chi tiết
Thảo Nguyên Đoàn
20 tháng 6 2016 lúc 10:47

\(\int\frac{1+sin2x+cos2x}{sinx+cosx}dx\)

\(=\int\frac{sin^2x+cos^2x+2sinxcosx+cos^2x-sin^2x}{sinx+cosx}dx\)

\(=\int\frac{\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}dx\)

\(=\int\left(sinx+cosx+cosx-sinx\right)dx=\int2cosxdx=2sinx\)

Thảo Nguyên Đoàn
20 tháng 6 2016 lúc 10:48

bạn tự thay cận vào nhé

 

Sugar Coffee
Xem chi tiết
Sugar Coffee
12 tháng 1 2022 lúc 20:27

Hi

zero
12 tháng 1 2022 lúc 20:29

... ;-;

zero
12 tháng 1 2022 lúc 20:46

hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

.

.

.

..

.

.

.

.

.

.

.

.

.

.chào cậu :)))))))))))))

Lalisa Manobal
Xem chi tiết
Duc
Xem chi tiết
Crackinh
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:14

1.

\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)

Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)

\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)

\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)

\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)

Nguyễn Việt Lâm
5 tháng 3 2022 lúc 17:15

2.

\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)

\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)

\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)

Kim Tuyền
Xem chi tiết
Akai Haruma
26 tháng 2 2019 lúc 17:31

Bạn xem lại xem có type thiếu đề không? \((x+\frac{\pi}{6})\) có sin hay cos, tan ở phía trước không?

Kim Tuyền
26 tháng 2 2019 lúc 18:21

Sin nha

Nguyễn Việt Lâm
26 tháng 2 2019 lúc 18:43

\(\int\limits^a_b\left(sinx+cosx\right)dx=\left(sinx-cosx\right)|^a_b=sina-cosa-sinb+cosb=m\)

\(\int\limits^b_a\left(sinx-cosx\right)dx=\left(-cosx-sinx\right)|^b_a=-cosa-sina+cosb+sinb=n\)

\(\Rightarrow\left\{{}\begin{matrix}m+n=-2\left(cosa-cosb\right)\\m-n=2\left(sina-sinb\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}cosa-cosb=-\dfrac{m+n}{2}\\sina-sinb=\dfrac{m-n}{2}\end{matrix}\right.\)

\(I=\int\limits^b_asin\left(x+\dfrac{\pi}{6}\right)dx=-cos\left(x+\dfrac{\pi}{6}\right)|^b_a=cos\left(a+\dfrac{\pi}{6}\right)-cos\left(b+\dfrac{\pi}{6}\right)\)

\(=cosa.cos\left(\dfrac{\pi}{6}\right)-sina.sin\left(\dfrac{\pi}{6}\right)-cosb.cos\left(\dfrac{\pi}{6}\right)+sinb.sin\left(\dfrac{\pi}{6}\right)\)

\(=\dfrac{\sqrt{3}}{2}\left(cosa-cosb\right)-\dfrac{1}{2}\left(sina-sinb\right)\)

\(=\dfrac{-\sqrt{3}}{4}\left(m+n\right)-\dfrac{1}{4}\left(m-n\right)\)

Minh Thu
Xem chi tiết
Hương Trà
5 tháng 2 2016 lúc 18:21

Hỏi đáp Toán

Nguyễn Thị Thu Hà
5 tháng 2 2016 lúc 18:34

Hỏi đáp Toán

Nguyễn Mỹ Linh
Xem chi tiết
Kim Ricard
31 tháng 1 2023 lúc 14:19

 \(A=\int \frac{x}{\sqrt{x+2}}dx \\ = \int \frac{x+2-2}{\sqrt{x+2}}dx \\ = \int \sqrt{x+2}-2\frac{1}{\sqrt{x+2}}dx \\ = \frac{2}{3}(x+2)^{\frac{3}{2}}-4\sqrt{x+2}+C\)

\(B=\int \frac{sinx+cosx}{\sqrt[3]{1-sin2x}}dx \\ x=\frac{\pi}{4}-u, dx=-du \\ =- \int \frac{sin(\frac{\pi}{4}-u)+cos(\frac{\pi}{4}-u)}{\sqrt[3]{1-sin(\frac{\pi}{2}-2u)}}du \\ = - \int \frac{\frac{1}{\sqrt2}cosu+\frac{1}{\sqrt2}sinu+\frac{1}{\sqrt2}cosu-\frac{1}{\sqrt2}sinu}{\sqrt[3]{1-cos2u}}du \\ = -\int \frac{\frac{2}{\sqrt2}cosu}{\sqrt[3]{1-cos2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{1-cos^2u+sin^2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{2sin^2u}}du \\ v=sinu, dv=cosudu \\ = -\sqrt2 \int \frac{1}{\sqrt[3]{2v^2}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} \int v^{-\frac{2}{3}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} 3v^\frac{1}{3}+C \\ = -\frac{\sqrt2}{\sqrt[3]2} 3\sqrt[3]{sin(\frac{\pi}{4}-x)}+C \)