tính
\(\int\frac{dx}{cosx}\)
\(\int\limits^{\frac{\pi}{3}}_0\frac{sinx}{cosx\sqrt{3+sin^2x}}dx\)
\(\int\limits^{ln8}_0\frac{e^x}{1+\sqrt{3e^x+1}}dx\)
\(\int\limits^{\frac{Π}{2}}_{\frac{Π}{6}}\frac{1+SIN2x+cOS2x}{sINx+cosx}dx\)
\(\int\frac{1+sin2x+cos2x}{sinx+cosx}dx\)
\(=\int\frac{sin^2x+cos^2x+2sinxcosx+cos^2x-sin^2x}{sinx+cosx}dx\)
\(=\int\frac{\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx+cosx}dx\)
\(=\int\left(sinx+cosx+cosx-sinx\right)dx=\int2cosxdx=2sinx\)
Tính: \(\int\dfrac{ln\left(sinx+cosx\right)}{cos^2x}dx\)
hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
.
.
.
..
.
.
.
.
.
.
.
.
.
.chào cậu :)))))))))))))
Tính:
\(A=\int\dfrac{cosx}{\left(x+1\right)^2}dx\)
Tính \(A=\int\frac{1}{cosx+1}dx\)
Tính nguyên hàm các hàm số sau:
1. \(I=\int\dfrac{cos^2x}{sin^8x}dx\)
2. \(I=\int\left(e^{sinx}+cosx\right)cosxdx\)
1.
\(I=\int\dfrac{cot^2x}{sin^6x}dx=\int\dfrac{cot^2x}{sin^4x}.\dfrac{1}{sin^2x}=\int cot^2x\left(1+cot^2x\right)^2.\dfrac{1}{sin^2x}dx\)
Đặt \(u=cotx\Rightarrow du=-\dfrac{1}{sin^2x}dx\)
\(I=-\int u^2\left(1+u^2\right)^2du=-\int\left(u^6+2u^4+u^2\right)du\)
\(=-\dfrac{1}{7}u^7+\dfrac{2}{5}u^5+\dfrac{1}{3}u^3+C\)
\(=-\dfrac{1}{7}cot^7x+\dfrac{2}{5}cot^5x+\dfrac{1}{3}cot^3x+C\)
2.
\(I=\int\left(e^{sinx}+cosx\right).cosxdx=\int e^{sinx}.cosxdx+\int cos^2xdx\)
\(=\int e^{sinx}.d\left(sinx\right)+\dfrac{1}{2}\int\left(1+cos2x\right)dx\)
\(=e^{sinx}+\dfrac{1}{2}x+\dfrac{1}{4}sin2x+C\)
I=\(\int\limits^b_a\left(x+\dfrac{\pi}{6}\right)\) dx theo m,n biết rằng:
\(\int\limits^a_b\left(sinx+cosx\right)\) dx=m ;\(\int\limits^b_a\left(sinx-cosx\right)dx\)
=n
Bạn xem lại xem có type thiếu đề không? \((x+\frac{\pi}{6})\) có sin hay cos, tan ở phía trước không?
\(\int\limits^a_b\left(sinx+cosx\right)dx=\left(sinx-cosx\right)|^a_b=sina-cosa-sinb+cosb=m\)
\(\int\limits^b_a\left(sinx-cosx\right)dx=\left(-cosx-sinx\right)|^b_a=-cosa-sina+cosb+sinb=n\)
\(\Rightarrow\left\{{}\begin{matrix}m+n=-2\left(cosa-cosb\right)\\m-n=2\left(sina-sinb\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}cosa-cosb=-\dfrac{m+n}{2}\\sina-sinb=\dfrac{m-n}{2}\end{matrix}\right.\)
\(I=\int\limits^b_asin\left(x+\dfrac{\pi}{6}\right)dx=-cos\left(x+\dfrac{\pi}{6}\right)|^b_a=cos\left(a+\dfrac{\pi}{6}\right)-cos\left(b+\dfrac{\pi}{6}\right)\)
\(=cosa.cos\left(\dfrac{\pi}{6}\right)-sina.sin\left(\dfrac{\pi}{6}\right)-cosb.cos\left(\dfrac{\pi}{6}\right)+sinb.sin\left(\dfrac{\pi}{6}\right)\)
\(=\dfrac{\sqrt{3}}{2}\left(cosa-cosb\right)-\dfrac{1}{2}\left(sina-sinb\right)\)
\(=\dfrac{-\sqrt{3}}{4}\left(m+n\right)-\dfrac{1}{4}\left(m-n\right)\)
\(\int\limits^{pi/2}_0\frac{sinx}{\left(sinx+\sqrt{3}cosx\right)^2}dx\)
1) Tinh nguyen ham
a) A = \(\int\dfrac{x}{\sqrt{x+2}}.dx\) b) B = \(\int\dfrac{sinx+cosx}{\sqrt[3]{1-sin2x}}.dx\)
\(A=\int \frac{x}{\sqrt{x+2}}dx \\ = \int \frac{x+2-2}{\sqrt{x+2}}dx \\ = \int \sqrt{x+2}-2\frac{1}{\sqrt{x+2}}dx \\ = \frac{2}{3}(x+2)^{\frac{3}{2}}-4\sqrt{x+2}+C\)
\(B=\int \frac{sinx+cosx}{\sqrt[3]{1-sin2x}}dx \\ x=\frac{\pi}{4}-u, dx=-du \\ =- \int \frac{sin(\frac{\pi}{4}-u)+cos(\frac{\pi}{4}-u)}{\sqrt[3]{1-sin(\frac{\pi}{2}-2u)}}du \\ = - \int \frac{\frac{1}{\sqrt2}cosu+\frac{1}{\sqrt2}sinu+\frac{1}{\sqrt2}cosu-\frac{1}{\sqrt2}sinu}{\sqrt[3]{1-cos2u}}du \\ = -\int \frac{\frac{2}{\sqrt2}cosu}{\sqrt[3]{1-cos2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{1-cos^2u+sin^2u}}du \\ = -\sqrt2 \int \frac{cosu}{\sqrt[3]{2sin^2u}}du \\ v=sinu, dv=cosudu \\ = -\sqrt2 \int \frac{1}{\sqrt[3]{2v^2}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} \int v^{-\frac{2}{3}}dv \\ = -\frac{\sqrt2}{\sqrt[3]2} 3v^\frac{1}{3}+C \\ = -\frac{\sqrt2}{\sqrt[3]2} 3\sqrt[3]{sin(\frac{\pi}{4}-x)}+C \)