Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan thu trang
Xem chi tiết
Akai Haruma
8 tháng 2 2017 lúc 21:25

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

Akai Haruma
8 tháng 2 2017 lúc 23:38

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

Akai Haruma
9 tháng 2 2017 lúc 0:58

Câu 6)

\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)

Câu 8)

\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)

\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\) ta có:

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)

\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)

\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)

Ngô Thị Ánh Vân
Xem chi tiết
Đào Thị Hương Lý
5 tháng 4 2016 lúc 21:55

Ta có \(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln2.\ln\left(2\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx=\ln2\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x.\ln\left(2\tan x\right)}+\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x}\)

Tính \(\ln2\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x.\ln\left(2\tan x\right)}=\frac{\ln2}{2}\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{d\left[\ln\left(2\tan x\right)\right]}{\ln2\left(2\tan x\right)}=\frac{\ln2}{2}\left[\ln\left(\ln\left(2\tan x\right)\right)\right]|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{\ln2}{2}.\ln\left(\frac{\ln2\sqrt{3}}{\ln2}\right)\)

Tính \(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x}=\frac{1}{2}\ln\left(\tan x\right)|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{1}{2}\ln\sqrt{3}\)

Vậy \(I=\frac{\ln2}{2}\ln\left(\frac{\ln2\sqrt{3}}{\ln2}\right)+\frac{1}{2}\ln\sqrt{3}\)

Võ Bình Minh
Xem chi tiết
Trần Gia Nguyên
Xem chi tiết
Hoàng Thị Tâm
18 tháng 4 2016 lúc 22:03

\(I=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\sqrt{3+2x-x^2}}=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\left(\sqrt{\left(x+1\right)\left(3-x\right)}\right)}\)

                                   \(=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)^2\sqrt{\frac{3-x}{x+1}}}\)

Đặt \(t=\sqrt{\frac{3-x}{x+1}}\Rightarrow\frac{dx}{\left(x+1\right)^2}=-\frac{1}{2}\)

Đổi cận : \(x=-\frac{1}{2}\Rightarrow t=\sqrt{7};x=0\Rightarrow t=\sqrt{3}\)

\(I=-\frac{1}{2}\int\limits^{\sqrt{3}}_{\sqrt{7}}dt=\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)\)

Guyo
Xem chi tiết
Mai Linh
23 tháng 1 2016 lúc 16:06

a) Đặt \(x=\sin t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) \(\Rightarrow dx=\cos tdt\)

Suy ra : \(\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\frac{\cos tdt}{\sqrt{\left(1-\sin^2t\right)^3}}=\frac{\cos tdt}{\cos^3t}=\frac{dt}{\cos^2t}=d\left(\tan t\right)\)

Khi đó \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\int d\left(\tan t\right)=\tan t+C=\frac{\sin t}{\sqrt{1-\sin^2t}}=\frac{x}{\sqrt{1-x^2}}+C\)

Mai Linh
23 tháng 1 2016 lúc 16:22

b) Vì \(x^2+2x+3=\left(x+1\right)^2+\left(\sqrt{2}\right)^2\)

nên ta đặt : \(x+1=\sqrt{2}\tan t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow dx=\sqrt{2}.\frac{dt}{\cos^2t};\tan t=\frac{x+1}{\sqrt{2}}\)

Suy ra \(\frac{dx}{\sqrt{x^2+2x+3}}=\frac{dx}{\sqrt{\left(x^2+1\right)^2+\left(\sqrt{2}\right)^2}}=\frac{dx}{\sqrt{2\left(\tan^2t+1\right).\cos^2t}}\)

                        \(=\frac{dt}{\sqrt{2}\cos t}=\frac{1}{\sqrt{2}}.\frac{\cos tdt}{1-\sin^2t}=-\frac{1}{2\sqrt{2}}.\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)\)

Khi đó \(\int\frac{dx}{\sqrt{x^2+2x+3}}=-\frac{1}{2\sqrt{2}}\int\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin t-1}{\sin t+1}\right|+C\left(1\right)\)

Từ \(\tan t=\frac{x+1}{\sqrt{2}}\Leftrightarrow\tan^2t=\frac{\sin^2t}{1-\sin^2t}=\frac{\left(x+1\right)^2}{2}\Rightarrow\sin^2t=1-\frac{2}{x^2+2x+3}\)

Ta tìm được \(\sin t\) thay vào (1), ta tính được I

Sonyeondan Bangtan
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2023 lúc 9:39

Đặt \(2x+2=u\Rightarrow2xdx=du\Rightarrow dx=\dfrac{1}{2}du\)

\(\left\{{}\begin{matrix}x=0\Rightarrow u=2\\x=2\Rightarrow u=6\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^6_2f\left(u\right).\dfrac{1}{2}du=\dfrac{1}{2}\int\limits^6_2f\left(u\right)du=\dfrac{1}{2}\int\limits^6_2f\left(x\right)dx=\dfrac{1}{2}.6=3\)

Hoa Thiên Lý
Xem chi tiết
Nhật Minh
23 tháng 1 2016 lúc 18:12

Dễ

Lan Hương
Xem chi tiết
Mai Thị Xuân Bình
Xem chi tiết
Phạm Thái Dương
1 tháng 4 2016 lúc 16:03

Đặt \(u=x^2e^x\Rightarrow du=\left(2x.e^x\right)dx=xe^x\left(2+x\right);dv=\frac{dx}{\left(x+2\right)^2}\Rightarrow v=-\frac{1}{x+2}\)

Vậy \(I=\int\limits^2_0\frac{x^2e^x}{\left(x+2\right)^2}=-\frac{x^2e^x}{x+2}|^2_0+\int\limits^2_0xe^xdx=-e^2+\left(xe^x-e\right)|^2=1_0\)

Trần Minh Ngọc
1 tháng 4 2016 lúc 16:11

Mình có cách khác, đổi biến số trước, sau lấy tích phân từng phần cũng ra

Đặt  \(t=x+2\Rightarrow\begin{cases}dt=dx,x=0\Rightarrow t=2,x=2\rightarrow t=4\\f\left(x\right)dx=\frac{\left(t-2\right)^2e^{t-2}}{t}.dt=\left(t+\frac{2}{t}-4\right)e^{t-2}dt\end{cases}\)

Suy ra : \(I=\int\limits^4_2te^{t-2}dt+\int\limits^4_2\frac{e^{t-2}}{t}dt-4\int\limits^4_2e^{t-2}dt=J+K+4L\left(1\right)\)

Tính các tích phân J, K, L ta cũng ra được kết quả giống bạn Dương