bài 2:giải các phương trình sau
a,x^3+x^2+x=-1/3
b,x^3+x^2-x+2=0
bài 2:giải các phương trình sau
a,x^3+x^2+x=-1/3
b,x^3+x^2-x+2=0
b) Ta có: \(x^3+x^2-x+2=0\)
\(\Leftrightarrow x^3+2x^2-x^2-2x+x+2=0\)
\(\Leftrightarrow x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
bài 1 giải các phương trình sau
a, (x-1)^2-(x+1)^2=2(x-3)
b, (2x+3)^2-3(x-4)(x+4)=(x-2)^2
c, x^2-9=(x-3)(5x+2)
d, x^3+4x^2-9x-36=0
*em đang cần gấp mọi người giúp em với ạ
a/
\(\left(x-1\right)^2-\left(x+1\right)^2=2x-6\\ x^2-2x+1-\left(x^2+2x+1\right)=2x-6\\ \)
\(\Leftrightarrow x^2-2x+1-x^2-2x-1-2x+6=0\)
\(\Leftrightarrow6-6x=0\)
=> x=1
b, \(4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4\)
\(\Leftrightarrow12x+9+48=-4x+4\Leftrightarrow16x=-53\Leftrightarrow x=-\dfrac{53}{16}\)
c, \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-5x-2\right)=0\Leftrightarrow\left(x-3\right)\left(-4x+1\right)=0\Leftrightarrow x=3;x=\dfrac{1}{4}\)
d, \(x^2\left(x+4\right)-9\left(x+4\right)=0\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x+4\right)=0\Leftrightarrow x=-3;3;-4\)
Giải các phương trình sau
a)\(x^2-2-x+\sqrt{2}=0\)
b) \((1-\sqrt{2})x^2-2(1+\sqrt{2})x+1+3\sqrt{2}=0\)
a: \(x^2-2-x+\sqrt{2}=0\)
=>\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)=0\)
=>\(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-1\right)=0\)
=>\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}+1\end{matrix}\right.\)
b: \(\left(1-\sqrt{2}\right)x^2-2\left(1+\sqrt{2}\right)x+1+3\sqrt{2}=0\)
\(\Delta=\left(-2-2\sqrt{2}\right)^2-4\left(1-\sqrt{2}\right)\left(1+3\sqrt{2}\right)\)
\(=12+8\sqrt{2}+4\left(\sqrt{2}-1\right)\left(3\sqrt{2}+1\right)\)
\(=12+8\sqrt{2}+4\left(6+\sqrt{2}-3\sqrt{2}-1\right)\)
\(=12+8\sqrt{2}+24-8\sqrt{2}-4=32>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2\left(1+\sqrt{2}\right)-4\sqrt{2}}{2\left(1-\sqrt{2}\right)}=1\\x_2=\dfrac{2\left(1+\sqrt{2}\right)+4\sqrt{2}}{2\left(1-\sqrt{2}\right)}=-7-4\sqrt{2}\end{matrix}\right.\)
giải các phương trình sau
a)\(\sqrt{x^2-1}\)+1=x2
b)\(\sqrt{x-2}\)+\(\sqrt{x-3}\)= -5
c) \(\sqrt{x^2+4x+4}\)+|x-4|=0
a) ĐKXĐ: \(x^2-1\ge0\)
Đặt \(\sqrt{x^2-1}=t\left(t\ge0\right)\)
\(\Rightarrow t=t^2\Rightarrow t\left(t-1\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)
b) ĐKXĐ: \(x\ge2\)
Ta có: \(\sqrt{x-2}+\sqrt{x-3}\ge0\) mà \(\sqrt{x-2}+\sqrt{x-3}=-5< 0\Rightarrow\) không có x thỏa
c) \(\sqrt{x^2+4x+4}+\left|x-4\right|=0\)
\(\Rightarrow\left|x+2\right|+\left|x-4\right|=0\) mà \(\left|x+2\right|+\left|x-4\right|\ge0\Rightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\)
\(\Rightarrow\) không có x thỏa
1,giải các phương trình sau
a,(x^2-x-10).(x^2-x-8)-8=0
b,(x-1).(x+1).(x+3).(x+5)+15=0
c,15x^4-8x^3-14x^2-8x+15+0
Bài 1: Giải các bất phương trình sau
a) x+1/x+3 > 1
b) 2x-1/x-3 ≤ 2
c) x2+2x+2/x2+3 ≥ 1
d) 2x+1/x2+2 ≥ 1
a, \(\dfrac{x+1}{x+3}>1\Leftrightarrow\dfrac{x+1}{x+3}-1>0\Leftrightarrow\dfrac{x+1-x-3}{x+3}>0\)
\(\Rightarrow x+3< 0\)do -2 < 0
\(\Rightarrow x< -3\)Vậy tập nghiệm BFT là S = { x | x < -3 }
b, \(\dfrac{2x-1}{x-3}\le2\Leftrightarrow\dfrac{2x-1}{x-3}-2\le0\Leftrightarrow\dfrac{2x-1-2x+6}{x-3}\le0\)
\(\Rightarrow x-3\le0\)do 5 > 0
\(\Rightarrow x\le3\)Vậy tập nghiệm BFT là S = { x | x \(\le\)3 }
c, \(\dfrac{x^2+2x+2}{x^2+3}\ge1\Leftrightarrow\dfrac{x^2+2x+2}{x^2+3}-1\ge0\)
\(\Leftrightarrow\dfrac{x^2+2x+2-x^2-3}{x^2+3}\ge0\Rightarrow2x-1\ge0\)do x^2 + 3 > 0
\(\Rightarrow x\ge\dfrac{1}{2}\)Vậy tập nghiệm BFT là S = { x | x \(\ge\)1/2 }
mình ko chắc nên mình đăng sau :>
d, \(\dfrac{2x+1}{x^2+2}\ge1\Leftrightarrow\dfrac{2x+1}{x^2+2}-1\ge0\Leftrightarrow\dfrac{2x+1-x^2-2}{x^2+2}\ge0\)
\(\Rightarrow-x^2+2x-1\ge0\Rightarrow-\left(x-1\right)^2\ge0\)vô lí
giải các bất phương trình sau
a)2x-1+5.(3-x)>0 b)2x-2/5 +3/10 +x-2/4
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)
Bài 1: Giải các phương trình sau
a. 2x – 3 = 4x + 6
c. x(x – 1) + x(x + 3) = 0
\(a)2x-3=4x+6\\ \Rightarrow2x=-9\\ \Rightarrow x=-\dfrac{9}{2}\\ c)x\left(x-1\right)+x\left(x+3\right)=0\\ \Rightarrow x^2-x+x^2+3x=0\\ \Rightarrow2x^2+2x=0\\ \Rightarrow2x\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
`a)2x-3=4x+6`
`<=>2x-4x=6+3`
`<=>-2x=9`
`<=>x=-9/2`
Vậy `S={-9/2}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`c)x(x-1)+x(x+3)=0`
`<=>x(x-1+x+3)=0`
`<=>x(2x+2)=0`
`@TH1:x=0`
`@TH2:2x+2=0<=>2x=-2<=>x=-1`
Vậy `S={-1;0}`
aa)2x – 3 = 4x + 6
\(=>2x-4x=6+3\)
\(=>-2x=9\)
\(=>x=-\dfrac{9}{2}\)
c) x(x – 1) + x(x + 3) = 0
\(=>x\left(x-1+x+3\right)=0\)
\(x\left(2x+2\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Bài 3: Giải các phương trình sau
a. (3x + 2)2 – (3x – 2)2 = 5x + 38
b. 3(x – 2)2 + 9(x – 1) = 3(x2 + x – 3)
c. (x + 3)2 – (x - 3)2 = 6x + 8
d. (x – 1)3 – x(x + 1)2 = 5x (2 – x) – 11(x + 2)
e. (x + 1)(x2 – x + 1) – 2x = x(x – 1)(x + 1)
a) (3x + 2)2 - (3x - 2)2 = 5x + 38
<=> 6x.4 = 5x + 38 <=> 19x = 38 <=> x = 2
b) 3(x - 2)2 + 9(x - 1) = 3(x2 + x - 3)
<=> 3x2 - 12x + 12 + 9x - 9 = 3x2 + 3x - 9
<=> -6x = -12 <=> x = 2
c) (x + 3)2 - (x - 3)2 = 6x + 8
<=> 2x.6 = 6x + 8 <=> 6x = 8 <=> x = 4/3
d) (x - 1)3 - x(x + 1)2 = 5x(2 - x) - 11(x + 2)
<=> x3 - 3x2 + 3x - 1 - x3 - 2x2 - x = 10x - 5x2 - 11x - 22
<=> 3x = -21 <=> x = -7
e) (x + 1)(x2 - x + 1) - 2x = x(x - 1)(x + 1)
<=> x3 - 1 - 2x = x3 - x
<=> x = -1