Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

Nguyễn Khánh Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 20:53

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

nên \(AB=\dfrac{3}{7}AC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{3}{7}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{42^2}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{9}{49}AC^2}+\dfrac{\dfrac{9}{49}}{\dfrac{9}{49}AC^2}=\dfrac{1}{1764}\)

\(\Leftrightarrow AC^2\cdot\dfrac{9}{49}=2088\)

\(\Leftrightarrow AC^2=11368\)

\(\Leftrightarrow AC=14\sqrt{58}\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{3}{7}\cdot14\sqrt{58}=6\sqrt{58}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(6\sqrt{58}\right)^2+\left(14\sqrt{58}\right)^2=13456\)

hay BC=116(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}HB=\dfrac{AB^2}{BC}=\dfrac{\left(6\sqrt{58}\right)^2}{116}=18\left(cm\right)\\CH=\dfrac{AC^2}{CH}=\dfrac{\left(14\sqrt{58}\right)^2}{116}=98\left(cm\right)\end{matrix}\right.\)

Phạm Nguyễn Thúy Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Do Le Minh
Xem chi tiết
Hai Dang Truong Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 21:16

\(\dfrac{BH}{HC}=\dfrac{1}{2}\)

\(\Leftrightarrow CH=2BH\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(HA^2=HB\cdot HC\)

hay \(HB=2\sqrt{2}\left(cm\right)\)

Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay \(AB=2\sqrt{6}\left(cm\right)\)

Phạm Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:09

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:11

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:31

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:30

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Phạm Duy
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 14:10

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:23

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:24

Bài 2: 

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Phương Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 21:13

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

Quỳnh Lữ Diễm
29 tháng 10 2021 lúc 20:00

Giải ra đi