Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kỳ Tỉ
Xem chi tiết
knight_Lucifer
25 tháng 4 2016 lúc 11:26

phân số tối giản là phân số mà tử ko còn chia hết mẫu nên ta phải CM 7n + 4 ko chia hết 9n + 5

nhân 9 vào mẫu ta đc 63n + 36=7.(9n + 5) +1 mà 1 ko chia hết cho 9n+5, =>63n + 36 ko chia hết cho 5 =>7n + a ko chia hết cho 9n + 5

vậy ps đó tối giản

knight_Lucifer
25 tháng 4 2016 lúc 11:52

đó là 1 TH còn TH còn lại là cm tử ko chia hết mẩu là nhân 7 vàotuwr rồi làm tương tự


 

123456
25 tháng 4 2016 lúc 19:56

Gọi ƯCLN(7n+4; 9n+5) là d. Ta có:

7n+4 chia hết cho d => 63n+36 chia hết cho d

9n+5 chia hết cho d => 63n+35 chia hết cho d

=> 63n+36-(63n+35) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(7n+4; 9n+5) = 1

=> 7n+4/9n+5 tối giản (đpcm)

pham ha my
Xem chi tiết
Hoàng Phú Huy
17 tháng 3 2018 lúc 19:28

dựa vào tìm ước chung lớn nhất

dễ mà

cậu lm đc

Nguyễn Phương Uyên
17 tháng 3 2018 lúc 19:29

gọi d là ƯC(7n+4; 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow35n+21-35n-20⋮d\)

\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n 

Cuber Việt
Xem chi tiết
An Trịnh Hữu
8 tháng 7 2017 lúc 22:42

Giả sử ước chung của 7n+4 và 9n+5 là d; ta có:

-\(\left(7n+4\right)⋮d=>9\left(7n+4\right)=\left(63n+36\right)⋮d\)

- \(\left(9n+5\right)⋮d=>7\left(9n+5\right)=\left(63n+35\right)⋮d\)

Do cả hai số đều chia hết cho d nên hiệu cũng chia hết cho d;

=> (63n + 36) - ( 63n + 35) \(⋮\)d=> \(1⋮d=>d=\pm1\)

Vậy phân số trên luôn tối giản;

CHÚC BẠN HỌC TỐT...

 Mashiro Shiina
8 tháng 7 2017 lúc 22:58

Gọi \(d\)\(UCLN\left(7n+4;9n+5\right)\)

\(\Rightarrow7n+4⋮d\Rightarrow9\left(7n+4\right)⋮d\Rightarrow63n+36⋮d\)

\(\Rightarrow9n+5⋮d\Rightarrow7\left(9n+5\right)⋮d\Rightarrow63n+35⋮d\)

\(\Rightarrow\left(63n+36\right)-\left(63n+35\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{7n+4}{9n+5}\) tối giản với mọi \(n\in N\)

Nguyễn Tử Đằng
9 tháng 7 2017 lúc 8:37

Gọi d là ước chung của 7n +4 và 9n+5 , ta có :

=>( 7n+4) \(⋮\) d => 9.(7n+4)=>(63n+36 ) \(⋮\) d

=>( 9n +5) \(⋮\) d =>7.(9n +5) =>(63n+35) \(⋮\) d

Vì cả hai số trên đều chia hết cho d nên hiệu của chúng cũng chia hết cho d

=> (63n+36) - ( 63n +35 ) \(⋮\)d

=> 1 \(⋮\)d => d = + 1 và -1

Vậy phân số trên luôn tối giản

Luffy Không Rõ Họ Tên
Xem chi tiết
Phạm Nguyễn Tất Đạt
9 tháng 5 2016 lúc 6:33

Gọi d là ƯCLN(9n+5;2n+1)

Ta có 9n+5\(⋮\)d;2n+1\(⋮\)d

     =>2*(9n+5)\(⋮\)d;9*(2n+1)\(⋮\)d

     =>18n+10\(⋮\)d;18n+9\(⋮\)d

=>[(18n+10)-(18n+9)]\(⋮\)d

=>[18n+10-18n-9]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(9n+5;2n+1)=1 Nên phân số \(\frac{9n+5}{2n+1}\) luôn là phân số tối giản(nEN*)

Đề phải là nEN* hoặc n>1

Phạm Đức Anh
Xem chi tiết

Gọi d là ƯCLN(7n+4,5n+3)

\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d

\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d

\(\Rightarrow\)35n+20-35n-21 \(⋮\) d

\(\Rightarrow\)-1 chia hết cho d hay d = -1

\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1

Vũ Hà Phương
Xem chi tiết
Vũ Hà Phương
9 tháng 2 2020 lúc 13:47

Nhớ trả lời nhanh nha

Khách vãng lai đã xóa
Lê Thị Trà My
Xem chi tiết
Nguyen Anh Tung
10 tháng 4 2016 lúc 20:14

Gọi d là Ư(7n+4; 5n+3) (với d thuộc N*)
Ta có: 7n+4 chia hết cho d  ;  5n+3 chia hết cho d
            5.(7n+4) chia hết cho d  ;  7.(5n+3) chia hết cho d
            35n+20 chia hết cho d  ;  35n+21 chia hết cho d
           (35n+21)-(35n+20) chia hết cho d
           1 chia hết cho d
Suy ra: d thuộc Ư(1). Do đó d=1
Vậy 7n+4/5n+3 là phân số tối giản.

Lú Toán, Mù Anh
Xem chi tiết
kisibongdem
24 tháng 2 2022 lúc 19:36

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)

Luffy Không Rõ Họ Tên
Xem chi tiết
Phạm Nguyễn Tất Đạt
9 tháng 5 2016 lúc 17:58

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

Đặng Minh Triều
9 tháng 5 2016 lúc 18:26

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

Nguyễn Văn Vinh
9 tháng 5 2016 lúc 19:20

gọi a là ƯC LN(7n+4;5n+3)

ta có

7n+4\(⋮\)a\(\Rightarrow\)35n+20\(⋮\)a

5n+3\(⋮\)a\(\Rightarrow\)35n+21\(⋮\)a

\(\Rightarrow\)(35n+21)-(35n+20)\(⋮\)a

=1\(⋮\)a\(\Rightarrow\)a=1

Vậy với mọi số tự nhiên n thì phân số \(\frac{7n+4}{5n+3}\)luôn tối giản