Cho tam giác ABC cân tại A (góc a khác 90 độ) hai đường cao BD,CE cắt nhau tại H .Tia AH cắt BC tại M.C/M
a,BD=CE
b,MB=MC
c,HB=HC
cho tam giác ABC cân tại A A< 90 độ. hai đường cao BD và CE cắt nhau tại H, tia AH cắt BC tại I.
từ C kẻ đường thẳng d vuông góc với AC, d cắt AH tại F .CM CB là phân giác ngoài của góc FCH
Cho tam giác ABC cân tại A(A<90 độ ) 2 đường cao BD và CE cắt nhau tại H . Tia AH cắt BC tại I . Từ C kẻ đường thằng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh góc HCB= góc FCB
BD và CE là đường cao cắt nhau tại H => H là trực tâm Tam giác ABC .
Vậy AI cùng là đường cao thứ 3.
Mà Tam giác ABC cân tại A (gt)
=> AI vừa là đường cao vừa là trung tuyến của Tam giác ABC .
=> IB = IC.
Xét tam giác HIB và tam giác HCI có:
IH : Cạnh chung
Góc HIC = góc HIB (=90 độ)
IB = IC (AI trung tuyến)
=> Tam giác HIB = Tam giác HCI (c.g.c)
=> HB = HC (2 cạnh tương ứng).
Vậy Tam giác HBC cân tại H .(1)
Mặt khác : BD vuông góc AC; đường thẳng d vuông góc AC.
=> BD // CF (Từ vuông góc đến song song)
=> Góc HBC = Góc ICF (So le)
Lại có góc HBC = góc HCI ( Theo (1) )
=> Góc HCB = góc FCB. (Cùng bằng góc HBC).
cho tam giác ABC cân tại A ( A < 90 độ ) . Kẻ BD vuông góc Ac ( D thuộc AC ) , CE vuông góc AB ( E thuộc AB ) , BD và CE cắt nhau tại H . a, CM : BD = CE . b, CM : tam giác BHC cân . c, CM : AH là đường trung trực của BC . d, TRên tia BD lấy điểm K sao cho D là trung điểm của BK . So sánh ECB và DKC
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN
* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC
1.
Tam giác AMC vuông tại M với đường cao MD
Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)
Tương tự ta có:
\(AN^2=AE.AB\) (2)
Mặt khác xét hai tam giác vuông ABD và ACE có:
\(\widehat{BAC}\) chung
\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)
(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)
Bài 2 tham khảo tại đây:
Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC - Hoc24
cho tam giác abc cân tại a (góc a<90 độ). hai đường cao bd và ce cắt nhau tại h. tia ah cắt bc tại i.
a) Chứng minh tam giác ABD=tam giác ACE.
b) CM: I là trung điểm BC
c) từ c kẻ đường thẳng d vuông góc ac, d cắt đường thẳng ah tại f. CMR: CB là tia phân giác của góc FHC
d) Giả sử góc BAC=60 độ và ab =4 cm. tính khoảng cách từ B đến đường thẳng CF
Cho tam giác ABC cân tại A ( A<900). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tại I.
a) CMR: tam giác ABD=tam giác ACE
b) Chứng minh I là trung điểm của BC
c) từ C kẻ đường thẳng D vuông góc AC, d cắt đường thẳng AH tại F. CMR: CB là tia phân giác của ^FCH
Bạn tự vẽ hình ik nha
a. Xét tam giác ABD và tam giác ACE có:
góc D = góc E = 90* (gt)
AB = AC (gt)
góc A chung
=> tg ABD = tg ACE (c. huyền-g. nhọn)
b. Vì H là giao điểm của 2 dường cao BD và CE
Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC
Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC
c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)
và góc ABC = góc ACB
=> góc DBC = góc ECB
Ta có: BD vuông góc AC (gt)
CF vuông góc AC (gt)
=> CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)
=> góc DBC = góc BCF ( so le trong)
Mà góc DBC = góc ECB
=> góc ECB = góc BCF
=> BC lá tia phân giác của góc ECF
cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. trên các đoạn HB, HC lấy các điểm M, N sao cho góc AMC = góc ANB = 90 độ. chứng minh:
a) AM= AD.AC
b) Tam giác AMN là tam giác cân
Cho tam giác ABC cân tại A ( góc A< 90 độ), các đường cao BD,CE (D thuộc Ac ; E thuộc AB) cắt nhau tại H .
a) Chứng minh BD = CE
.b) Chứng minh tam giác BHC là tam giác cân.
c) So sánh HB và HD.
Cho tam giác ABC cân tại A, hai đường chéo BD,CE cắt nhau tại H. Chứng minh: A)AH vuông góc với BC B) AH là tia phân giác của góc BAC. C)AH là đường trung trực của DE.
a: Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC
b: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
góc EAH=góc DAH
=>ΔAEH=ΔADH
=>AE=AD và HE=HD
=>AH là trung trực của DE