Chương I - Hệ thức lượng trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ly Ly

* Cho tam giác nhọn ABC có hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy điểm M,N sao cho góc AMC= góc ANB= \(90^0\). Chứng minh:AM=AN

* Cho tam giác ABC vuông tại A, đường cao AH. Biết \(\dfrac{AB}{AC}=\dfrac{20}{21}\)và AH=420. Tính chu vi tam giác ABC

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 14:59

1.

Tam giác AMC vuông tại M với đường cao MD

Áp dụng hệ thức lượng: \(AM^2=AD.AC\) (1)

Tương tự ta có:

\(AN^2=AE.AB\) (2)

Mặt khác xét hai tam giác vuông ABD và ACE có:

\(\widehat{BAC}\) chung

\(\Rightarrow\Delta_VABD\sim\Delta_VACE\) (g.g)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AD}{AE}\) \(\Leftrightarrow AB.AE=AC.AD\) (3)

(1);(2);(3) \(\Rightarrow AM^2=AN^2\) \(\Rightarrow AM=AN\)

 

Bài 2 tham khảo tại đây:

Cho tam giác ABC vuông tại A , đường cao AH . Biết AB/AC = 20/21 , AH = 420 . Tính chu vi tam giác ABC  - Hoc24

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 15:00

undefined


Các câu hỏi tương tự
Anbert_An
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Quynh Existn
Xem chi tiết
Chóii Changg
Xem chi tiết
Chóii Changg
Xem chi tiết
Nguyễn Khánh Nhi
Xem chi tiết
Bùi Thục Nhi
Xem chi tiết
Hue Do
Xem chi tiết
Trang Nguyễn
Xem chi tiết