Cmr :2n3 + 3n2 + n chia hết cho 6 với mọi số nguyên n
Chứng minh rằng với mọi n ∈ N ∗ ta có 2 n 3 − 3 n 2 + n chia hết cho 6
Chứng minh với mọi số nguyên n thì A = n 4 - 2 n 3 - n 2 + 2n chia hết cho 24.
A = n 4 – 2 n 3 – n 2 +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó A ⋮ 24 .
Cho A = n3+3n2+2n. Chứng minh rằng A chia hết cho 3 với mọi số nguyên n
A=n3+n2+2n2+2n
=n2(n+1)+2n(n+1)
=(n+1)(n2+2n)
=n(n+1)(n+2)
Vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
=>n(n+1)(n+2) luôn chia hết cho 3 với mọi
=>A luôn chia hết cho 3 với mọi số nguyên n.
7. Chứng minh rằng với mọi số tự nhiên lẻ n:
n2+ 4n + 8 chia hết cho 8
n3+ 3n2- n - 3 chia hết cho 48
8. Tìm tất cả các số tự nhiên n để :
n4+ 4 là số nguyên tố
n1994+ n1993+ 1 là số nguyên tố
Chứng minh rằng n3+3n2+ 2n chia hết cho 6 với mọi n ϵ Z
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)
\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)
\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)
Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)
\(n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)⋮6\)
Cho dãy số ( u n ) với u n = - 2 n 3 + 3 n 2 + 4 n 4 + 4 n 3 + n . Tính lim u n
A. -2
B. 0
C. - ∞
D. + ∞
Ta có: u n = − 2 n 3 + 3 n 2 + 4 n 4 + 4 n 3 + n = − 2 n 3 + 3 n 2 + 4 n 4 n 4 + 4 n 3 + n n 4 = − 2 n + 3 n 2 + 4 n 4 1 + 4 n + 1 n 3
Mà lim 2 n = 0 , lim 3 n 2 = 0 , lim 4 n 4 = 0 , lim 4 n = 0 v à lim 1 n 3 = 0
Do đó lim u n = 0 + 0 + 0 1 + 0 + 0 = 0
Chọn đáp án B
CMR: n3-n chia hết cho 6 với mọi số nguyên n
n3-n=n(n2-1)=n(n+1)(n-1)
Do n là số nguyên =>n-1 ; n ; n+1 là 3 số nguyên liên tiếp nên trong đó tồn tại 1 số chia hết cho 2 và 1 số chia hết cho 3
Mà ƯCLN(2;3)=1
=>n(n-1)(n+1) chia hết cho 2.3 hay chia hết cho 6 với mọi n nguyên
Ta có: n3-n=n.(n2-1)=n.(n-1).(n+1)=(n-1).n.(n+1)
Vì (n-1) và n là 2 số tự nhiên liên tiếp=>(n-1).n chia hết cho 2=>(n-1).n.(n+1) chia hết cho 2(1)
Vì (n-1),n và n+1là 3 số tự nhiên liên tiếp=>(n-1).n.(n+1) chia hết cho 3(2)
Từ (1) và (2) ta thấy:
(n-1).n.(n+1) chia hết cho 2,3.
mà (2,3)=1
=>(n-1).n.(n+1) chia hết cho 6
=>n3-n chia hết cho 6
=>ĐPCM
CMR: n3-n chia hết cho 6 với mọi số nguyên n
vào câu hỏi tương tự
tick nha
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ
CMR:
(n-1)2(n+1)+(n2-1) luôn chia hết cho 6 với mọi số nguyên n.
\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
Vì n;n-1;n+1 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!\)
hay \(n\left(n-1\right)\left(n+1\right)⋮6\)