B=x2+xy+y2+2x+2y+2022 với x+y=-2
giúp em với ạ !!!!
x^2+xy+y^2+2x+2y+2022
=(x+y)^2-xy+2x+2y+2020
cho e hỏi là tại sao dòng trên là +xy xuống dòng dưới thành -xy
với lại 2022 sao lại thành 2020 ạ!!
gtnn x2+y2-xy+2x-2y+2022.
\(A=x^2+y^2-xy+2x-2y+2022\)
\(A=\left(x^2+\dfrac{y^2}{4}+1-xy+2x-y\right)+\dfrac{3}{4}y^2-y+2021\)
\(A=\left(x-\dfrac{y}{2}+1\right)^2+\dfrac{3}{4}\left(y-\dfrac{2}{3}\right)^2+\dfrac{6062}{3}\ge\dfrac{6062}{3}\)
\(A_{min}=\dfrac{6062}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{3};\dfrac{2}{3}\right)\)
Tổng các x; y ; z thỏa mãn(x-1)^2022+(2y-1)^2022+|x+2y-z|^2022 = 0 là
A. 5/2 B. 7/2 C.-5/2 D.-7/2
Giúp mik nhanh với mik đang gấp lắm :<
3.Tính giá trị biểu thức
a) A = x2 + 2xy + y2 - 9z2 tại x = 5, y = 7 và z = 12
b) B = 4x2 - y2 + 2x + y tại x = 1, y = 2
giúp mình với, mình lười tính
\(a,A=\left(x+y\right)^2-9z^2=\left(x+y-3z\right)\left(x+y+3z\right)\\ A=\left(5+7-36\right)\left(5+7+36\right)=-24\cdot48=-1152\\ b,B=\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)=\left(2x+y\right)\left(2x-y-1\right)\\ B=\left(2+2\right)\left(2-2-1\right)=4\cdot\left(-1\right)=-4\)
Tìm x; y là số nguyên biết :
a) xy – x 2 = y+2
b) xy=3(x-y)-2
c) x 3 -y 3=xy3+4
d) x 2y-3x+y=-2
giúp mình với ạ!!!
(x+1)/x2+2x-3 và (-2x)/x2+7x+10
x-y/x2+xy vÀ 2x-3y/xy2
x-2y/2 và x2+y2/2x-2xy
x+2y/x2y+xy2 và x-yy/x2+2xy+y2
a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)
\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)
b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)
\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)
c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)
\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)
6. Chứng minh rằng:
a. x2 + xy + y2 + 1 > 0 với mọi x, y
b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z
(ai lm giúp với ạ iem cảm ơn nhìu
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
b.
$x^2+4y^2+z^2-2x-6z+8y+15=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1$
$=(x-1)^2+(2y+2)^2+(z-3)^2+1\geq 0+0+0+1>0$ với mọi $x,y,z$
Ta có đpcm.
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022