\(\left|x-1.5\right|+\left|2.5-x\right|=0\)
Tìm GTNN của biểu thức:
\(\left|x-1.5\right|+\left|2.5-x\right|=0\)
lx-1,5l+l2,5-xl=0
=>lx-1,5l=-l2,5-xl
mà lx-1,5l>(=)0=>-l2,5-xl>(=)0
=>l2,5-xl=0=>x=2,5
=>lx-1,5l+l2,5-xl=1(trái giả thiết)
Vậy không có x thỏa mãn lx-1,5l+l2,5-xl=0
|x-1,5| + | 2,5 - x| = 0
=> |x - 1,5| > hoặc = 0 và | 2.5 - x| > hoặc = 0, vs mọi x
Nên |x - 1,5 | =0 và | 2,5 - x| = 0
=> x-1,5 = 0 và 2,5 - x =0
=>x = 1,5 và x = 2,5
Vậy x vô nghiệm
Giải các bất phương trình sau:
a) \(0,{1^{2 - x}} > 0,{1^{4 + 2x}};\)
b) \({2.5^{2x + 1}} \le 3;\)
c) \({\log _3}\left( {x + 7} \right) \ge - 1;\)
d) \({\log _{0,5}}\left( {x + 7} \right) \ge {\log _{0,5}}\left( {2x - 1} \right).\)
\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)
\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)
c, ĐK: \(x>-7\)
\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)
Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)
d, ĐK: \(x>\dfrac{1}{2}\)
\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)
Kết hợp với ĐKXĐ, ta được: \(x\ge8\)
\(\text{Tìm x, biết:}\)
\(a\)) \(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
\(b\)) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(c\)) \(11-\left(-53+x\right)=97\)
\(d\)) \(-\left(x+84\right)+213=-16\)
\(|x+6.4|+\left|x+2.5\right|+\left|x+8.1\right|=4x\)
Rút gọn biểu thức sau:
\(A=\left(1+\dfrac{2}{1.4}\right).\left(1+\dfrac{2}{2.5}\right).\left(1+\dfrac{2}{3.6}\right).....\left(1+\dfrac{2}{x\left(x+3\right)}\right)\)
a) \(\left(19x+2.5^2\right):14=\left(13-8\right)^2-4^2\)
b) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
c) \(|x+7|=20+5.\left(-3\right)\)
a, (19x+2.52) : 14 = (13-8)2 - 42
(19x + 2.25) : 14 = 52 - 42
(19x + 50) : 14 = 25 - 16
(19x + 50) : 14 = 9
19 x + 50 = 9.14
19x + 50 = 126
19x = 126 - 50
19x = 76
x = 76 : 19
x = 4
vậy____
b) x + (x + 1) + (x + 2) + (x + 3)+.....+(x+30) = 1240
(x+x+x+...+x) + (1+2+3+...+30) = 1240
31x + 465 = 1240
31x = 1240 - 465
31x = 775
x = 775 : 31
x = 25
vậy____
c) |x + 7| = 20 + 5.(-3)
|x + 7| = 20 + (-15)
|x + 7| = 5
\(\Rightarrow\orbr{\begin{cases}x+7=5\\x+7=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5-7\\x=-5-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=-12\end{cases}}\)
vậy_____
Tìm x \(3^3.x^2-2^4.x^2=8^2.5-4^2.3^2\)
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)
`@` `\text {Ans}`
`\downarrow`
`3^3 * x^2 - 2^4 * x^2 = 8^2 * 5 - 4^2 * 3^2`
`=> x^2 . (3^3 - 2^4) = 2^6 . 5 - 2^4 . 3^2`
`=> x^2 . 11 = 2^4 . (2^2 . 5 - 3^2)`
`=> x^2 . 11 = 2^4 . 11`
`=> x^2 . 11 - 2^4 . 11 = 0`
`=> 11 . (x^2 - 16) = 0`
`=> x^2 - 16 = 0`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = `\(\pm4\)
Vậy, `x \in`\(\left\{4;-4\right\}\)
_____
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2\cdot2^2=4^2\cdot3\)
`=>`\(\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+\left(3\cdot2\right)^2=48\)
`=>`\(\dfrac{23}{108}\cdot x+6^2=48\)
`=>`\(\dfrac{23}{108}x=48-6^2\)
`=>`\(\dfrac{23}{108}x=48-36\)
`=>`\(\dfrac{23}{108}x=12\)
`=>`\(x=\dfrac{1296}{23}\)
Vậy, `x = `\(\dfrac{1296}{23}\)
\(3^3.x^2-2^4.x^2=8^2.5-4^3.3^2\)
\(\Leftrightarrow x^2\left(27-16\right)=2^6.5-2^6.9\)
\(\Leftrightarrow11x^2=2^6.\left(5-9\right)=-4.2^6=-2^8\)
\(\Leftrightarrow x^2=-\dfrac{2^6}{11}< 0\)
\(\Rightarrow x\in\varnothing\)
\(\left[\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{3}\right)^3\right]x+3^2.2^2=4^2.3\)
\(\Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{27}\right)x+36=48\)
\(\Leftrightarrow\dfrac{23}{108}x=12\Leftrightarrow x=\dfrac{12.108}{23}=\dfrac{1296}{23}\)
Rút gọn biểu thức sau:
\(A=\left(1+\dfrac{2}{1.4}\right).\left(1+\dfrac{2}{2.5}\right).\left(1+\dfrac{2}{3.6}\right).....\left(1+\dfrac{2}{x\left(x+3\right)}\right)\)
\(A=\left(\dfrac{6}{1.4}\right)\left(\dfrac{12}{2.5}\right)\left(\dfrac{20}{3.6}\right)\left(\dfrac{x^2+3x+2}{x\left(x+3\right)}\right)\)
\(A=\dfrac{2.3}{1.4}.\dfrac{3.4}{2.5}.\dfrac{4.5}{3.6}...\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+3\right)}\)
\(A=\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{3.4.5...\left(x+2\right)}{4.5.6...\left(x+3\right)}=\left(x+1\right)\dfrac{3}{x+3}=\dfrac{3\left(x+1\right)}{x+3}\)
Tìm x:
\(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9=5\right|\)
\(\left|x-2\right|+\left|x-3\right|+\left|2x-8\right|=9\\ \left|x+2\right|+\left|x+3\right|+\left|x+1\right|=4\\ \left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.13}\right|+...+\left|x+\dfrac{1}{397.401}\right|=101x\)
\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)
\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)
\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)
\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)
\(\Rightarrow x=\dfrac{100}{401}\)