cho tam gác ABC vuông tại A đường cao AH , biết BC= 20cm ,AB= 12cm . Tính các độ dài còn lại
cho tam gác ABC vuông tại A đường cao AH , biết BC= 20cm ,AC= 12cm . Tính các độ dài còn lại
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AB^2=20^2-12^2=256\)
=>AB=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=9,6(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{16^2}{20}=12,8\left(cm\right)\\CH=\dfrac{12^2}{20}=7,2\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A, AH là đường cao. Tính lần lượt độ dài các đoạn thẳng BH, CH, AH, AC nếu biết :
1) AB = 6 cm, BC = 8cm
2) AB = 12cm, BC = 13cm
3) AB = 20cm, BC = 25cm
Lời giải:
1) Xét tam giác $BHA$ và $BAC$ có:
$\widehat{B}$ chung
$\widehat{BHA}=\widehat{BAC}=90^0$
$\Rightarrow \triangle BHA\sim \triangle BAC$ (g.g)
$\Rightarrow \frac{BH}{BA}=\frac{BA}{BC}$
$\Rightarrow BH=\frac{BA^2}{BC}=\frac{6^2}{8}=4,5$ (cm)
$CH=BC-BH=8-4,5=3,5$ (cm)
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{8^2-6^2}=2\sqrt{7}$ (cm)
$AH=\frac{AB.AC}{BC}=\frac{6.2\sqrt{7}}{8}=\frac{3\sqrt{7}}{2}$ (cm)
2. 3. Những phần này bạn làm tương tự như phần 1.
Câu 1. Cho tam giác ABC vuông tại A có đường cao AH. Biết BC = 20cm, AB = 12cm. Độ dài AH là bao nhiêu?
tham khảo
a,AC=√BC2−AB2=16(cm)(pytago)
Áp dụng HTL:
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
Cho tam giác ABC có các cạnh AB = 20cm, AC = 15cm, BC = 25cm, AH là đường cao.
a) Chứng minh tam giác ABC vuông
b) Tính độ dài đoạn thẳng BH, CH, biết AH = 12cm
a) Ta có: AB2 + AC2 = 202 + 152 = 625
BC2 = 252 = 625
nên AB2 + AC2 = BC2
Suy ra tam giác ABC vuông do định lí Pi-ta-go đảo
b) Áp dụng định lí Pitago trong tam giác vuông ACH được:
HC2 + HA2 = AC2
CH2 = 152 - 122
CH2 = 81
=> CH=9 (cm)
Áp dụng định lí Pitago trong tam giác vuông AHB được:
AH2 + BH2 = AB2
122 + BH2 = 202
=> BH2 = 202 - 122 = 256
=> BH=16 cm
Hình bạn tự kẻ nhé .
a) Ta có AB2+AC2 = 202+152= 625
Lại có BC2 = 252 = 625
=> Tam giác ABC vuông ( Py ta go )
b) Ta có AH là đường cao
=> Tam giác ABH và tam giác ACH vuông tại H
Áp dụng Py ta go vào tam giác vuông ACH ta được :
AC2=CH2+ AH2
=> 152 = CH2 + 122
=> CH2 = 152 - 122 = 81
=> CH = 9 ( cm)
=> BH = BC-CH = 25- 9 = 16 ( cm)
Cho tam giác ABC vuông tại A có AB = 12cm, BC= 20cm. Kẻ đường cao AH. a) Chứng minh ∆ABC và ∆ HBA đồng dạng. b) Chúng minh AH^2= HB. HC c) Tính độ dài AH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
cho tam giác ABC vuông tại A biết AB = 5cm AC = 12cm BC = 13cm. Kẻ đường cao AH. Tính các cạnh và góc còn lại của tam giác AHB
Câu 4:
\(a,\sin B=\dfrac{AC}{BC}=\dfrac{12}{13};\cos B=\dfrac{AB}{BC}=\dfrac{5}{13};\tan B=\dfrac{AC}{AB}=\dfrac{12}{5};\cot B=\dfrac{AB}{AC}=\dfrac{5}{12}\\ b,\text{Áp dụng HTL: }\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ \sin B=\dfrac{12}{13}\approx67^0\\ \Rightarrow\widehat{B}\approx67^0\\ \Rightarrow\widehat{HAB}=90^0-\widehat{B}\approx23^0\)
Cho tam giác ABC vuông tại A. Kẻ đường cao AH cắt BC tại H, biết AB=20cm, AC=25cm, AH=16cm. Tính độ dài BC và Chu vì tam giác ABC
Áp dụng định lý \(Pi-ta -go \) và tam giác vuông \(ABC\) ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(=\sqrt{20^2+25^2}=5\sqrt{41}\) \(\left(cm\right)\)
Chu vi \(\Delta ABC\) là :\(AB+AC+BC=20+25+5\sqrt{41}=45+5\sqrt{41}\left(cm\right)\)