Bài 1 : So sánh
1) - 3 \(\sqrt{13}\) và -9
2) \(\sqrt{15}-1\) và \(\sqrt{10}\)
3)5 và \(\sqrt{8}+1\)
Bài 5: So sánh
1,A=\(\sqrt{13}\) + \(\sqrt{20}\)
B=\(\sqrt{24}\) + \(\sqrt{19}\)
2,A=\(\sqrt{26}\) + \(\sqrt{10}\)
B=\(\sqrt{64}\)
Bài 2:
\(A=\sqrt{26}+\sqrt{10}>\sqrt{25}+\sqrt{9}=5+3=8\)
\(B=\sqrt{64}=8\)
Do đó: A>B
1.Ta có:
\(A=\)\(\sqrt{13}+\sqrt{20}=\sqrt{13}+2\sqrt{5}\)
\(B=\)\(\sqrt{24}+\sqrt{19}=\sqrt{19}+2\sqrt{6}\)
So sánh ta thấy:
\(\sqrt{13}<\sqrt{19}\) ; \(2\sqrt{5}<2\sqrt{6}\)
Vậy A < B
Bài 1: So sánh:\(\frac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
Bài 2: Tính:
1, \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
2, \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
3, \(\frac{1}{1+\sqrt{2}}\:+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
B2:
3) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2019}+\sqrt{2020}}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{2020}-\sqrt{2019}}{2020-2019}\)
\(=\sqrt{2}-1+\sqrt{3}-2+...+\sqrt{2020}-\sqrt{2019}\)
\(=\sqrt{2020}-1\)
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) Ta có: \(2=\sqrt{4}\)
Vì \(4>3\Rightarrow\sqrt{4}>\sqrt{3}\Rightarrow2>\sqrt{3}\Rightarrow1>\sqrt{3}-1\)
b) \(\left\{{}\begin{matrix}2\sqrt{31}=\sqrt{4.31}=\sqrt{124}\\10=\sqrt{100}\end{matrix}\right.\)
Vì \(124>100\Rightarrow\sqrt{124}>\sqrt{100}\Rightarrow2\sqrt{31}>10\)
c) Vì \(15< 16\Rightarrow\sqrt{15}< \sqrt{16}\Rightarrow\sqrt{15}-1< \sqrt{16}-1\)
\(\Rightarrow\sqrt{15}-1< 4-1\Rightarrow\sqrt{15}-1< 3\)
Lại có: \(10>9\Rightarrow\sqrt{10}>\sqrt{9}\Rightarrow\sqrt{10}>3\)
\(\Rightarrow\sqrt{10}>\sqrt{15}-1\)
Bài 1: So sánh
1/ 6 + \(2\sqrt{2}\)và 9
2/ 9 + \(4\sqrt{5}\)và 16
3/ 1 và \(\sqrt{3}-1\)
4/ 9 - \(4\sqrt{5}\)và 16
5/ \(\sqrt{2}+1\)và 2
6/ \(2\sqrt{3}-5\)và \(\sqrt{3}-4\)
7/ \(\sqrt{3}-3\sqrt{2}\)và \(-4\sqrt{3}+5\sqrt{2}\)
8/ \(5\sqrt{5}-2\sqrt{3}\)và \(6+4\sqrt{5}\)
9/ \(\sqrt{11}-\sqrt{3}\)và 2
10/ \(3+\sqrt{2}\)và \(2+\sqrt{3}\)
11/ \(\sqrt{2}+\sqrt{3}\)và 3
12/ \(\sqrt{2}+\sqrt{3}\)và \(\sqrt{10}\)
13/ \(\sqrt{2}+\sqrt{6}\)và \(2+\sqrt{3}\)
14/ \(\frac{13-2\sqrt{3}}{6}\)và \(\sqrt{2}\)
15/ \(\sqrt{8}+\sqrt{15}\)và \(\sqrt{65}-1\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
bài 1 Tính giá trị biểu thức:
a)\(\sqrt{1,44}+3\sqrt{1,69}\)
b)\(\sqrt{0,04}+2\sqrt{0,25}\)
bài 2 bài 2 so sánh
a) 2\(\sqrt{31}\) và 10
b) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a) \(2\sqrt{31}=\sqrt{4.31}=\sqrt{124}>\sqrt{100}=10\\\Rightarrow2\sqrt{31}>10\)
Bài 1:
a) \(\sqrt{1.44}+3\sqrt{1.69}=1.2+3\cdot1.3=1.2+3.9=5.1\)
b) \(\sqrt{0.04}+2\cdot\sqrt{0.25}=0.2+2\cdot0.5=1.2\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
Bài 1: Tính
A=\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
B=\(\sqrt{13-\sqrt{160}-\sqrt{53+4\sqrt{90}}}\)
C=\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
D=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
E= \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
F= \(\sqrt{3+\sqrt{11+6\sqrt{2}}}-\sqrt{5+2\sqrt{6}}\)
G=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Bài 2: so sánh
a) \(\sqrt{24}+\sqrt{45}\) và 12
b) \(\sqrt{37}-\sqrt{15}\) và 2
c) \(\sqrt{16}\) và \(\sqrt{15}\times\sqrt{17}\)
d) 8 và \(\sqrt{15}+\sqrt{17}\)
Bài 2 :
a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)
b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)
c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)
Bài 1: So sánh các căn bậc hai số học
a) 1 và\(\sqrt{3}-1\) b) 2 và \(\sqrt{2}+1\) c) 2\(\sqrt{31}\)và 10 d)\(\sqrt{2}+\sqrt{11}\)và \(\sqrt{3}+5\)
Bài 1. so sánh:
a) \(7\)và \(\sqrt{37}+1\)
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
c) \(\frac{30-3\sqrt{26}}{5}\)và \(\sqrt{10}\)
d) \(\sqrt{1+\sqrt{2+\sqrt{5}}}\)và 2
Bài 2. Rút gọn
a) \(\sqrt{6+2\sqrt{5}+\sqrt{13+4\sqrt{3}}}\)
b) \(\sqrt{\sqrt{3}-\sqrt{3.\sqrt{13-4\sqrt{3}}}}\)
giúp mk vs mn
a) 7 và \(\sqrt{37}+1\)
=7 và 7,08
=>......
b) \(\sqrt{17}-\sqrt{50}-1\)và \(\sqrt{99}\)
=-3,95 và 9,95
=>.....