Tìm giá trị lớn nhất của biểu thức (Max):
C = -2x(x+7)
D = -3x^2+5x-9
Giúp mình nhé! Cảm ơn ạ!
Tìm giá trị nhỏ nhất của các biểu thức sau :
C=|x-1|+|x-5|
Tìm giá trị lớn nhất .....
a) C=3-|2x-5| b / D= 1 / 2|x-1|+3
Giúp mình với mình đang cần gấp cảm ơn ạ!
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Chứng tỏ giá trị của biểu thức ko phụ thuộc vào giá trị của biến:
c) 3x(x-2) -5x(x-1)-8(x^2-3)
d) 2x(x^2+x+1)-2y^2(y+1)-2(y+10)
Giúpp mình nhé cảm ơn nhìu ạ :((
tìm giá trị nhỏ nhất của biểu thức: A = \(\dfrac{5x^2-x+1}{x^2}\)
nhanh lên nhé mình đang cần gấp!
xin cảm ơn ạ
\(A=\dfrac{5x^2}{x^2}-\dfrac{x}{x^2}+\dfrac{1}{x^2}=\dfrac{1}{x^2}-\dfrac{1}{x}+5=\left(\dfrac{1}{x^2}-\dfrac{1}{x}+\dfrac{1}{4}\right)+\dfrac{19}{4}=\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(A_{min}=\dfrac{19}{4}\) khi \(\dfrac{1}{x}=\dfrac{1}{2}\Rightarrow x=2\)
Tìm giá trị lớn nhất của biểu thức a) C=-3x^2-12x+4 b) D=-x^2+5x c) M=2x-x^2
Lời giải:
a.
$C=16-3(x^2+4x+4)=16-3(x+2)^2$
Vì $(x+3)^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow C\leq 16-3.0=16$
Vậy $C_{\max}=16$ khi $x=-2$
b.
$D=-x^2+5x=2,5^2-(x^2-5x+2,5^2)$
$=6,25-(x+2,5)^2\leq 6,25-0=6,25$
Vậy $D_{\max}=6,25$ khi $x=-2,5$
c.
$M=2x-x^2=1-(x^2-2x+1)=1-(x-1)^2\leq 1-0=1$
Vậy $M_{\max}=1$ khi $x=1$
a: Ta có: \(C=-3x^2-12x+4\)
\(=-3\left(x^2+4x-\dfrac{4}{3}\right)\)
\(=-3\left(x^2+4x+4-\dfrac{16}{3}\right)\)
\(=-3\left(x+2\right)^2+16\le16\forall x\)
Dấu '=' xảy ra khi x=-2
b: Ta có: \(D=-x^2+5x\)
\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
c: Ta có: \(M=-x^2+2x\)
\(=-\left(x^2-2x+1-1\right)\)
\(=-\left(x-1\right)^2+1\le1\forall x\)
Dấu '=' xảy ra khi x=1
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức A=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
Giúp mình với ạ!!! Mình cảm ơn rất nhiều ạ!!!
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
Bài 4:
a) Tìm giá trị lớn nhất của biểu thức: F = - | 4x - 2/5| + 3/2
b) Tìm giá trị nhỏ nhất của biểu thức sau: H = ( 7/2 - 3x)2 - 2/3
CÁC BẠN GIẢI GIÚP MÌNH NHÉ! AI NHANH VÀ ĐÚNG NHẤT MÌNH TICK CHO! CẢM ƠN CÁC BẠN RẤT NHIỀU!
3 Tìm giá trị lớn nhất của biểu thức :
a) A=-2x^2+5x-8 ; B=3-x^2+4x ; C=-2x^2+3x+1 ; D=-5x^2-4x-19/5
\(A=-2x^2+5x-8=-2\left(x^2-\frac{5}{2}x+4\right)\)
\(=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}+\frac{39}{16}\right)=-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\)
Vì: \(-2\left(x-\frac{5}{2}\right)^2-\frac{39}{8}\le\frac{39}{8}\forall x\)
GTLN của bt là 39/8 tại \(-2\left(x-\frac{5}{2}\right)^2=0\Rightarrow x=\frac{5}{2}\)
cn lại lm tg tự nha bn
a) 5x/2x+2 +1=-6/x+1
b) x2-6/x = x+3/2
c) Tìm x sao cho giá trị của biểu thức 3x-2/4 không nhỏ hơn giá trị của biểu thức 3x+3/6
d) Tìm x sao cho giá trị của biểu thức (x+1)2 không nhỏ hơn giá trị của biểu thức (x-1)2
e) Tìm x sao cho giá trị của biểu thức 2x-3/35 + x(x-2)/7 không lớn hơn giá trị của biểu thức x^2/7-2x-3/5
f) Tìm x sao cho giá trị của biểu thức 3x-2/4 không lớn hơn giá trị của biểu thức 3x+3/6
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
Tìm giá trị nhỏ nhất của biểu thức:
A= |5x - 1| - 3
B= |2x - 7| + 12
C= -|5 - 3x| + 2005
D= 29 - |7 + 3x|
AI GIÚP MÌNH NHANH MÌNH TICK CHO NHÉ. Thanks all
A= |5x - 1| - 3
Ta thấy:\(\left|5x-1\right|\ge0\)
\(\Rightarrow\left|5x-1\right|-3\ge0-3=-3\)
\(\Rightarrow A\ge-3\)
Dấu = khi x=1/5
Vậy...
B= |2x - 7| + 12
Ta thấy: \(\left|2x-7\right|\ge0\)
\(\Rightarrow\left|2x-7\right|+12\ge0+12=12\)
\(\Rightarrow B\ge12\)
Dấu = khi x=7/2
C và D fai là tìm Max
C=-|5 - 3x| + 2005
Ta thấy :\(-\left|5-3x\right|\le0\)
\(\Rightarrow-\left|5-3x\right|+2005\le0+2005=2005\)
\(\Rightarrow C\le2005\)
Dấu = khi x=5/3
Vậy...
D= 29 - |7 + 3x|
Ta thấy:\(-\left|7+3x\right|\le0\)
\(\Rightarrow29-\left|7+3x\right|\le29-0=29\)
\(\Rightarrow D\le29\)
Dấu = khi x=-7/3
Vậy....