Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Vũ Nguyễn Võ

Tìm giá trị lớn nhất của biểu thức a) C=-3x^2-12x+4 b) D=-x^2+5x c) M=2x-x^2

Akai Haruma
28 tháng 8 2021 lúc 10:18

Lời giải:
a. 
$C=16-3(x^2+4x+4)=16-3(x+2)^2$
Vì $(x+3)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow C\leq 16-3.0=16$

Vậy $C_{\max}=16$ khi $x=-2$

b.

$D=-x^2+5x=2,5^2-(x^2-5x+2,5^2)$

$=6,25-(x+2,5)^2\leq 6,25-0=6,25$

Vậy $D_{\max}=6,25$ khi $x=-2,5$

c.

$M=2x-x^2=1-(x^2-2x+1)=1-(x-1)^2\leq 1-0=1$
Vậy $M_{\max}=1$ khi $x=1$

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 14:58

a: Ta có: \(C=-3x^2-12x+4\)

\(=-3\left(x^2+4x-\dfrac{4}{3}\right)\)

\(=-3\left(x^2+4x+4-\dfrac{16}{3}\right)\)

\(=-3\left(x+2\right)^2+16\le16\forall x\)

Dấu '=' xảy ra khi x=-2

b: Ta có: \(D=-x^2+5x\)

\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 15:00

c: Ta có: \(M=-x^2+2x\)

\(=-\left(x^2-2x+1-1\right)\)

\(=-\left(x-1\right)^2+1\le1\forall x\)

Dấu '=' xảy ra khi x=1


Các câu hỏi tương tự
Alexandra Alice
Xem chi tiết
dũng lê
Xem chi tiết
Nguyễn Trung Khánh
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Võ_Như_Quỳnh
Xem chi tiết
Xem chi tiết
Xuyen Phan
Xem chi tiết
ThanhNghiem
Xem chi tiết
ĐỗThịHươngGiang8c
Xem chi tiết