cho △EFP vuông tại E biết cạnh FP = 20cm, EF = 12cm. Hãy tính tỉ số lượng giác của góc F
Cho tam giác DEF vuông tại D có DE=0,9cm ; DF=12cm và DH vuông góc với EF a) Viết tỉ số lượng giác tan E b) tính các tỉ số lượng giác của góc F
a: ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
=>\(EF^2=0,9^2+12^2=144,81\)
=>\(EF=\sqrt{144,81}\)(cm)
Xét ΔDEF vuông tại D có \(tanE=\dfrac{DF}{DE}\)
=>\(tanE=\dfrac{12}{0,9}=\dfrac{120}{9}=\dfrac{40}{3}\)
b: Xét ΔDEF vuông tại D có
\(sinF=\dfrac{DE}{EF}=\dfrac{0.9}{\sqrt{144,81}}\)
\(cosF=\dfrac{DF}{EF}=\dfrac{12}{\sqrt{144,81}}\)
\(tanF=\dfrac{0.9}{12}=\dfrac{9}{120}=\dfrac{3}{40}\)
\(cotF=\dfrac{12}{0.9}=\dfrac{40}{3}\)
BÀI 1: Cho , đường cao DH, biết DE= 15cm, DF= 20cm. a) Tính EF, DH, EH, FH.
b)Tính các tỉ số lượng giác của góc E rồi suy ra các tỉ số lượng giác của góc F tính sao các bn
Cho tam giác DEF vuông tại D có DE =5cm, DF =12cm. Tính các tỉ số lượng giác của góc E từ đó suy ra các tỉ số lượng giác của góc F
Lời giải:
$EF=\sqrt{ED^2+DF^2}=\sqrt{5^2+12^2}=13$ (cm) theo định lý Pitago
$\sin E=\frac{DF}{EF}=\frac{12}{13}$
$\cos E=\frac{ED}{EF}=\frac{5}{13}$
$\tan E=\frac{DF}{ED}=\frac{12}{5}$
$\cot E=\frac{1}{\tan E}=\frac{5}{12}$
Vì $\widehat{E}, \widehat{F}$ là 2 góc phụ nhau nên:
$\sin F=\cos E=\frac{5}{13}$
$\cos F=\sin E=\frac{12}{13}$
$\tan F=\cot E=\frac{5}{12}$
$\cot F=\tan E=\frac{12}{5}$
Bài 4. Cho tam giác DEF vuông tại D có DE = 9cm DF = 12cm Tia phân giác của góc D cắt EF tại P. Từ P kẻ PH vuông góc DF (H thuộc DF). a) Tính tỉ số (EP)/(FP) b) Tìm các cặp tam giác đồng dạng có trong hình vẽ và tỉ số đồng dạng. c) Tính PH.
a: EP/FP=DE/DF=3/4
b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có
góc HFP chung
=>ΔFHP đồng dạng vơi ΔFDE
c: ΔFHP đồng dạng với ΔFDE
=>HP/DE=FP/FE=4/7
=>HP/9=4/7
=>HP=36/7(cm)
a: EP/FP=DE/DF=3/4
b: Xet ΔFHP vuông tại H và ΔFDE vuông tại D có
góc HFP chung
=>ΔFHP đồng dạng vơi ΔFDE
c: ΔFHP đồng dạng với ΔFDE
=>HP/DE=FP/FE=4/7
=>HP/9=4/7
=>HP=36/7(cm)
Bài 1: Cho tam giác ABC vuông tại A
a. Hãy viết các tỉ số lượng giác của góc C
b. Biết AB= 5cm, AC=12cm. Hãy tính các tỉ số lượng giác của góc B
c. Tính B,C (làm tròn đến phút)
\(a,\sin\widehat{C}=\dfrac{AB}{BC};\cos\widehat{C}=\dfrac{AC}{BC};\tan\widehat{C}=\dfrac{AB}{AC};\cot\widehat{C}=\dfrac{AC}{AB}\\ b,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\left(pytago\right)\\ \Rightarrow\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{13};\cos\widehat{B}=\dfrac{AB}{BC}=\dfrac{5}{13}\\ \tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5};\cot\widehat{B}=\dfrac{AB}{AC}=\dfrac{5}{12}\)
\(\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{12}{5}\approx\tan67^022'\\ \Rightarrow\widehat{B}\approx67^022'\\ \Rightarrow\widehat{C}=90^0-67^022'=22^038'\)
Tam giác DEF vuông tựi D, đường cao DK. Biết DE=15,DF=25 a) Tính DK, EF b) Tính tỉ số lượng giác của góc F C) Tính góc E, F
cho tam giác ABC vuông ở A.Hai cạnh kề với góc vuông là AC dài 12cm và AB =12cm điểm E nằm trên cạnh AC có AE=1/2 AC từ E kẻ đường song song với AB có cạnh BC tại F tính cạnh EF
1) Cho tam giác DEF vuông tại D có đường cao DH, Cho DE = 12cm, EF = 20cm. Tính độ dài các
cạnh DF, DH, EH, FH ?
2) Cho tam giác DEF vuông tại D có đường cao DH, Cho EH = 7,2cm, FH = 12,8cm. Tính độ dài
các cạnh EF, DH, DE, DF?
giúp e với ạ e cần gấp