Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Duy Tân
Xem chi tiết
Bảo Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 7:57

loading...

 

Bảo Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 7:56

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

dũng nguyễn tiến
Xem chi tiết
dũng nguyễn tiến
Xem chi tiết
dũng nguyễn tiến
Xem chi tiết
Nguyễn Thị Hồng Na
Xem chi tiết
Trần Huy
15 tháng 5 2023 lúc 21:34

a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:

$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$

Với I là tâm đường tròn, A là điểm trên đường tròn.

Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$

Thay vào công thức ta được:

$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$

Vậy bán kính của đường tròn là $\sqrt{34}$.

Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:

$(x-2)^2 + (y-3)^2 = 34$

b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.

Ta có phương trình đường tròn chính giữa:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Tại điểm M(x,y) trên đường tròn, ta có:

$(x-1)^2 + (y+5)^2 = 2^2$

Đạo hàm hai vế theo x:

$2(x-1) + 2(y+5)y' = 0$

Suy ra:

$y' = -\frac{x-1}{y+5}$

Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:

$y - y_M = y'(x-x_M)$

Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:

$y + 5 = \frac{-(x-1)}{y+5}(x-1)$

Simplifying:

$x(y+5) + y(x-1) = 6$

Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến

fghj
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 18:19

Lời giải:

Vì $B$ thuộc đt $2x-y=0$ nên gọi tọa độ của $B$ là $(a,2a)$

Gọi $H$ là trung điểm của $AC$ thì $H(2, 2)$

$\overrightarrow{BH}=(2-a,2-2a)$

$\overrightarrow{AC}=(2,6)$

Vì $ABC$ là tam giác cân tại $B$ nên $\overrightarrow{BH}\perp \overrightarrow{AC}$

$\Rightarrow 2(2-a)+6(2-2a)=0$

$\Rightarrow a=\frac{8}{7}$. Do đó $B(\frac{8}{7}, \frac{16}{7})$

$\overrightarrow{AB}=(\frac{1}{7}, \frac{23}{7})$

$\Rightarrow \overrightarrow{n_{AB}}=(\frac{-23}{7}, \frac{1}{7})$

PTĐT $AB$ là:

$\frac{-23}{7}(x-1)+\frac{1}{7}(y+1)=0$

$\Leftrightarrow -23x+y+24=0$

Tương tự với PTĐT $BC$

Phạm Lan Hương
30 tháng 1 2021 lúc 18:24

undefined

Hồng Phúc
30 tháng 1 2021 lúc 18:52

Cách khác:

\(\overrightarrow{AC}=\left(2;6\right)\)

Phương trình đường thẳng AC:

\(\dfrac{x-1}{2}=\dfrac{y+1}{6}\Leftrightarrow3x-y-4=0\)

Gọi H là chân đường cao kẻ từ B, H có tọa độ:

\(\left\{{}\begin{matrix}x_H=\dfrac{1+3}{2}=2\\y_H=\dfrac{-1+5}{2}=2\end{matrix}\right.\Rightarrow H=\left(2;2\right)\)

Vì BH vuông góc với AC và có \(H\left(2;2\right)\) thuộc BH, phương trình đường thẳng BH: \(x+3y-8=0\)

Tọa độ điểm B là nghiệm của hệ:

\(\left\{{}\begin{matrix}2x-y=0\\x+3y-8=0\end{matrix}\right.\Rightarrow B\left(\dfrac{8}{7};\dfrac{16}{7}\right)\)

Đến đây thì dễ rồi, làm tiếp cách kia.

Phạm Bích liễu Huỳnh
Xem chi tiết