cho 4 so a,b,c,d sao cho a.c=b^2,b.d=c^2. chung minh a/d=a^2+b^2+c^2/b^2+c^2+d^2
cho a/b=c/d chứng minh a.c/b.d=a^2+c^2/b^2+d^2
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)
+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)
câu cuối lm tương tự
cho a , b , c , d là các số hữu tỉ dương và a/b = c/d . chứng minh rằng
a ) a.c/b.d = a^2+ c^2 / b^2 + d^2
b ) (a+2.c ). (b + d ) =(a+c ) .(b+ 2.d )
cho ti le thuc a/b=c/d.Chứng minh rằng (a.c)/(a^2+c^2)=(b.d)/(b^2+d^2)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)
\(\Rightarrow\frac{ac}{a^2+c^2}=\frac{bd}{b^2+d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho a/b = c/d với a,b,c,d khác 0. CMR: a^2-c^2/b^2-d^2=a.c/b.d
cho \(\frac{a}{b}=\frac{c}{d}\). chứng minh \(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
cho a.c=b^2;b.d=c^2 và a,b,c,d khác 0. Chừng minh rằng: a^3.d+b^3.d+c^3.d=a.b^3+c^3.a+a.d^3
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\)
CMR: \(\dfrac{a.c}{b.d}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\\ \dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\\ \Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\)(b,d≠0) chứng tỏ rằng \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a.c}{b.d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\) (1)
Lại có vì : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{ac}{bd}\) (2)
Từ (1) và (2) => ĐPCM