\(\left(2+3x\right)^2=9\)
\(\left(x^2+x+1\right)\left(^3\sqrt{\left(3x-2\right)^2}+^3\sqrt{\left(3x-2\right)}+1\right)=9\)
CMR :\(X^6+27=\left(X^2+3\right)\left(X^4-3X^2+9\right)=\left(X^2+3x+3\right)\left(X^4-3X^3+6X^2-9x+9\right)\)
giải phương trình
\(\left(2x^2-3x+1\right)\left(2x^2-3x-9\right)=-9\)
Đặt \(2x^2-3x+1=t\Rightarrow2x^2-3x-9=t-10\)
Phương trình trở thành:
\(t\left(t-10\right)=-9\Leftrightarrow t^2-10t+9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x+1=1\\2x^2-3x+1=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x=0\\2x^2-3x-8=0\end{matrix}\right.\)
\(\Leftrightarrow...\) (bấm máy)
Tìm x, biết:
a) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
b) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=15\)
c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
d) \(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
a: \(\Leftrightarrow x^3-27-x\left(x^2-4\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
=>4x-27=1
hay x=7
b: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x+1\right)^2+3x^2=15\)
\(\Leftrightarrow-9x^2+27x+6x^2+12x+6+3x^2=15\)
=>39x+6=15
hay x=3/13
c: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
hay x=14
Tính:
a) \(\left(x^2-2\right).\left(1-x\right)+\left(x+3\right).\left(x^2-3x+9\right)\)
b) \(\left(2x^4+x^3-3x^2+4x-3\right):\left(x^2-x+1\right)\)
a: \(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
b: \(=\dfrac{2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x-2-x-1}{x^2-x+1}\)
\(=2x^2+3x-2+\dfrac{-x-1}{x^2-x+1}\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Tìm x biết :
a ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
b ) \(2x^2+7x+3\) = 0
c ) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
d ) \(2x^2+11x+9=0\)
e ) \(x\left(x+2\right)-x^2-8=0\)
f ) \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)
\(\Rightarrow x^3+27-x^3+4x=27\)
\(\Rightarrow27+4x=27\)
\(\Rightarrow4x=0\)
\(\Rightarrow x=0\)
b) \(2x^2+7x+3=0\)
\(\Rightarrow2x^2+x+6x+3=0\)
\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
c) Trùng đề bài a
d) \(2x^2+11x+9=0\)
\(\Rightarrow2x^2+2x+9x+9=0\)
\(\Rightarrow2x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(2x+9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x+9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\2x=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{9}{2}\end{matrix}\right.\)
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)
giải phương trình:
\(\left(x^2-3x-9\right)^2-\left(3x-17\right)^2=0\)
\(\Leftrightarrow\left(x^2-3x-9-3x+17\right)\left(x^2-3x-9+3x-17\right)=0\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+8=0\\x^2-26=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x^2=26\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=4;x_2=2\\x=\sqrt{26}\end{matrix}\right.\)
Vậy \(S=\left\{4;2;\sqrt{26}\right\}\)
tìm x:\(9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4-10=0\)
\(18x+3=0\)
\(18x=-3\)
\(x=\frac{-3}{18}\)
\(x=\frac{-1}{6}\)
vậy \(x=\frac{-1}{6}\)
Ta có:
\(9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Rightarrow9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(\Rightarrow9x^2+18x+9-9x^2+4=10\)
\(\Rightarrow9x^2-9x^2+18x+13=10\)
\(\Rightarrow18x=10-13\)
\(\Rightarrow18x=-3\)
\(\Rightarrow18x=-\frac{1}{6}\)