\(\left(2+3x\right)^2=9=\left(3\right)^2=\left(-3\right)^2\)
(+) 2 +3x = 3 => 3x = 3 - 2
=> 3 x = 1
=> x = 1/3
(+) 2 + 3x = - 3
=> 3x = -3 - 2
=> 3x = -5
=> x = -5/3
\(\left(2+3x\right)^2=9=3^2=\left(-3\right)^2\)
=>2+3x=3,-3
=>3x=1,-5
=>x=1/3,-5/3
\(\left(2+3x\right)^2=9=\left(3\right)^2=\left(-3\right)^2\)
(+) 2 +3x = 3 => 3x = 3 - 2
=> 3 x = 1
=> x = 1/3
(+) 2 + 3x = - 3
=> 3x = -3 - 2
=> 3x = -5
=> x = -5/3
\(\left(2+3x\right)^2=9=3^2=\left(-3\right)^2\)
=>2+3x=3,-3
=>3x=1,-5
=>x=1/3,-5/3
\(\left(x^2-x^3\right).\left(x-5\right)\)
\(\left(x+3\right)\left(x^2-3x+9\right)\)
\(\left(2x+y^2\right).\left(2x-y^2\right)\)
\(tính\)
\(\left(x^2-x^3\right).\left(x-5\right)\)
\(\left(x+3\right).\left(x^2-3x+9\right)\)
\(\left(x^2-3\right).\left(x^4+3x^2+9\right)\)
\(\left(x-3y\right)\)
\(\left(x+2y+x\right).\left(x+2y-z\right)\)
Tìm x
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(X-3\right).\left(X^2+3X+9\right)\)
Tìm x, biết:
i) 4*3x+3x+1=63
k)9*\(\left(\dfrac{2}{3}\right)^{x+2}\)-\(\left(\dfrac{2}{3}\right)^x\)=\(\dfrac{4}{3}\)
a,\(5.\left(x+2\right)^3+7=2\)
b,\(14-\left|\dfrac{3x}{2}-1\right|=9\)
Rút gọn các biểu thức:
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
Bài 11 : Tìm GTNN của của các biểu thức sau :
a ) \(A=\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|.\)
b ) \(B=\left|x+2\right|+\left|3x-4\right|+\left|x-2\right|+5\)
c ) \(M=\left|x+2\right|+\left|x-3\right|\)
d ) \(C=\left|2x+5\right|+\left|2x+1\right|+\left|2x-7\right|+\left|2x-4\right|+4\)
e ) \(D=\left|3x-6\right|+\left|3x-9\right|+\left|3x-12\right|+\left|3x-15\right|+2018\)