\(\left(x^2-x^3\right).\left(x-5\right)\)
\(\left(x+3\right)\left(x^2-3x+9\right)\)
\(\left(2x+y^2\right).\left(2x-y^2\right)\)
\(tính\)
\(\left(x^2-x^3\right).\left(x-5\right)\)
\(\left(x+3\right).\left(x^2-3x+9\right)\)
\(\left(x^2-3\right).\left(x^4+3x^2+9\right)\)
\(\left(x-3y\right)\)
\(\left(x+2y+x\right).\left(x+2y-z\right)\)
Tìm x
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
Rút gọn các biểu thức:
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
Tìm x biết:
a) \(2.\left|3x-1\right|-\dfrac{3}{4}=\dfrac{1}{20}\)
b) \(\left|x+5\right|+\left|x-3\right|=9\)
Bài 11 : Tìm GTNN của của các biểu thức sau :
a ) \(A=\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|.\)
b ) \(B=\left|x+2\right|+\left|3x-4\right|+\left|x-2\right|+5\)
c ) \(M=\left|x+2\right|+\left|x-3\right|\)
d ) \(C=\left|2x+5\right|+\left|2x+1\right|+\left|2x-7\right|+\left|2x-4\right|+4\)
e ) \(D=\left|3x-6\right|+\left|3x-9\right|+\left|3x-12\right|+\left|3x-15\right|+2018\)
chứng minh rằng các biểu thức sau không phụ thuộc vào x:
a. \(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
b. \(B=\left(x^2-2\right)\left(x^2+x-1\right)-x\left(x^3+x^2-3x-2\right)\)
c. \(C=x\left(x^3+x^2-3x-2\right)-\left(x^2-2\right)\left(x^2+x-1\right)\)