Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thiên Long
Xem chi tiết
An Nhiên
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 8 2021 lúc 18:13

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

Lê Tài Bảo Châu
Xem chi tiết
KP9
2 tháng 8 2020 lúc 7:07

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 8 2020 lúc 14:49

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích 

Khách vãng lai đã xóa
Lê Tài Bảo Châu
2 tháng 8 2020 lúc 14:49

toàn 1 lũ hãm điểm

Khách vãng lai đã xóa
Hồ Thị Mai Linh
Xem chi tiết
Linh Lê
Xem chi tiết
Đinh Anh Thư
Xem chi tiết
nghiem thi phuong uyen
Xem chi tiết
WTFシSnow
29 tháng 7 2020 lúc 16:06

E = \(\frac{x^4+1}{\left(x^2+1\right)^2}\)

để E lớn nhất 

thì \(\left(x^2+1\right)^2\) phải nhỏ nhất

mà \(\left(x^2+1\right)^2\)> 0 và khác 0 ( vì là mẫu số )

=> \(\left(x^2+1\right)^2=1\)

=> \(x^2+1=1\)

=> \(x^2=0\)

=> x = 0

để E đạt giá trị lớn nhất thì x = 0

Khách vãng lai đã xóa
da Dinh
29 tháng 7 2020 lúc 16:27

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}\le\frac{x^4+1}{x^4+1}=1\\ \Rightarrow maxE=1\Leftrightarrow x=0\)

\(E=\frac{x^4+1}{\left(x^2+1\right)^2}=\frac{x^4+1}{x^4+2x^2+1}=1-\frac{2x^2}{x^4+2x^2+1}\\ \ge1-\frac{2x^2}{2x^2+2x^2}=\frac{1}{2}\\ \Rightarrow minE=\frac{1}{2}\Leftrightarrow x=1\)

Khách vãng lai đã xóa
da Dinh
29 tháng 7 2020 lúc 16:34

(ᴾᴿᴼシPickaミ★ácミ★Quỷ★彡): sai rồi bạn ơi, khi x=0 thì tử cũng đạt giá trị nhỏ nhất vậy thì sao suy ra đc E max

Khách vãng lai đã xóa
Pha Lê Tuyết
Xem chi tiết
Mr Lazy
6 tháng 6 2015 lúc 18:29

Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)

\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)

\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)

\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)

\(\Rightarrow\left|A\right|\le4\)

\(\Rightarrow-4\le A\le4\)

\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)

\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)

Vậy \(MinA=-4;MaxA=4\)

Phan Ưng Tố Như
Xem chi tiết