phân tích đa thức thành nhân tử.
x2-y2-5x+5y
Phân tích các đa thức sau thành nhân tử rồi tính giá trị đa thức:
a) A = 9x2 + 15x + 6xy + y2 + 5y biết 3x + y = 0
b) B = 25x2 – y4 – 5x + y2
Lời giải:
a. $A=9x^2+15x+6xy+y^2+5y=(9x^2+6xy+y^2)+(15x+5y)$
$=(3x+y)^2+5(3x+y)=0^2+5.0=0$
b. $25x^2-y^4-5x+y^2=(25x^2-y^4)-(5x-y^2)=(5x-y^2)(5x+y^2)-(5x-y^2)$
$=(5x-y^2)(5x+y^2-1)$
Phân tích các đa thức sau thành nhân tử
a) x 2 + x y − 5 x − 5 y
b) 25 − x 2 − y 2 − 2 x y
c) x 4 + x 3 + 2 x 2 + x + 1
Phân tích các đa thức sau thành nhân tử a.3x²-6x+9x². B.3x²+5y-3xs-5x C.3y²-3z²+3x²+6xy. D.x²-25-2xy+y2
\(a,3x^2-6x+9x^2=12x^2-6x=6x\left(2x-1\right)\\ b,3x^2+5y-3xy-5x=\left(3x^2-3xy\right)-\left(5x-5y\right)=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\\ c,3y^2-3z^2+3x^2+6xyz=3\left(y^2-z^2+x^2+2xyz\right)\\ d,x^2-25-2xy+y^2=\left(x-y\right)^2-5^2=\left(x-y-5\right)\left(x-y+5\right)\)
.Phân tích các đa thức sau thành nhân tử:
a) 5x2y- 10xy2
b) x2 + 2xy + y2 - 5x - 5y
c) x2 – 6x + 8
d)5x2 – 10xy + 5y2 – 20z2
\(a,5x^2y-10xy^2=5xy\left(x-2y\right)\\ b,x^2+2xy+y^2-5x-5y=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\\ c,x^2-6x+8=\left(x^2-2x\right)-\left(4x-8\right)=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\\ d,5x^2-10xy+5y^2-20z^2=5\left(x^2-2xy+y^2-4z^2\right)=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]=5\left(x-y-2z\right)\left(x-y+2z\right)\)
Phân tích đa thức thành nhân tử:
a) x 4 + 1 - 2 x 2 ; b) x 2 - y 2 - 5y + 5x;
c) y 2 - 4 x 2 +4x - 1; d) x3 ( 2 + x ) 2 - ( x + 2 ) 2 + 1 - x 3 .
phân tích đa thức thành nhân tử
a) x2- x- y2- y
b) x2- 2xy- y2-z2
c) 5x- 5y+ 4x- ay
d) 3x3- x2-21x+ 7
e) x3- 4x2- 8x- 8
f) x3- 5x2- 5x+ 1
g) x2y- xz+ z- y
h) x4- x3+ x2- 1
i) x4- x2+ 10x- 25
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
Phân tích đa thức thành nhân tử:
a) x(x+y)-5x-5y
b) 3x-5y-6ax+10ay
c) a2-6a-b2+6b
d) 100a2-20a-2b-b2
e) 36x2-12x+1-b2
f) x2-z2+y2-2xy
a,x(x+y)-5x-5y
=x(x+y)-5(x+y)
=(x+y)(x-5)
b,3x-5y-6ax+10ay
=(3x-6ax)-(5y-10ay)
=3x(1-2a)-5y(1-2a)
=(1-2a)(3x-5y)
c,a2-6a-b2+6b
=(a2-b2)-(6a-6b)
=(a-b)(a+b)-6(a-b)
=(a-b)(a+b-6)
d,100a2-20a-2b-b2
=(100a2-b2)-(20a+2b)
=(10a-b)(10a+b)-2(10a+b)
=(10a+b)(10a-b-2)
e,36x2-12x+1-b2
=(36x2-12x+1)-b2
=(6x-1)2-b2
=(6x-1-b)(6x-1+b)
f,x2-z2+y2-2xy
=(x2-2xy+y2)-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
Phân tích các đa thức sau thành nhân tử:
a/ x( 3- x) – x + 3 b/ 3x2 – 5x – 3xy + 5y c/ x2 – xy – 10x + 10y
d/ 2xy+ x2 + y2 - 16 e/ x2 – y2 – 4x – 4y f/ 9 – 4x2 + 4xy – y2
g/ y3 – 2xy2 + x2y h/ x3 – 3x2 – 4x + 12 i/ x( x- y) + x2 – y2
a: \(=\left(3-x\right)\left(x+1\right)\)
b: \(=3x\left(x-y\right)-5\left(x-y\right)\)
=(x-y)(3x-5)
c: \(=x\left(x-y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(x-10\right)\)
a) \(=x\left(3-x\right)+\left(3-x\right)=\left(3-x\right)\left(x+3\right)\)
b) \(=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)
c) \(=x\left(x-y\right)-10\left(x-y\right)=\left(x-y\right)\left(x-10\right)\)
d) \(=\left(x+y\right)^2-16=\left(x+y-4\right)\left(x+y+4\right)\)
e) \(=\left(x-y\right)\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(x-y-4\right)\)
f) \(=9-\left(4x^2-4xy+y^2\right)=9-\left(2x-y\right)^2=\left(3-2x+y\right)\left(3+2x-y\right)\)
g) \(=y\left(y^2-2xy+x^2-y\right)\)
h) \(=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
i) \(=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)=\left(x-y\right)\left(2x+y\right)\)
Phân tích đa thức sau thành nhân tử: 3x2 – 3xy – 5x + 5y
Cách 1: Nhóm hai hạng tử đầu tiên với nhau và hai hạng tử cuối với nhau:
3x2 – 3xy – 5x + 5y
= (3x2 – 3xy) – (5x – 5y)
(Nhóm thứ nhất có nhân tử chung là 3x ; nhóm thứ hai có nhân tử chung là 5)
= 3x(x – y) – 5(x – y)
(Xuất hiện nhân tử chung là (x – y))
= (x – y)(3x – 5)
Cách 2: Nhóm hạng tử thứ 1 với hạng tử thứ 3; hạng tử thứ 2 với hạng tử thứ 4:
3x2 – 3xy – 5x + 5y
= (3x2 – 5x) – (3xy – 5y)
(Nhóm thứ nhất có nhân tử chung là x, nhóm thứ hai có nhân tử chung là y)
= x.(3x – 5) – y.(3x – 5)
(Xuất hiện nhân tử chung 3x – 5)
= (x – y).(3x – 5).
Phân tích các đa thức sau thành nhân tử:
3x2 – 3xy – 5x + 5y
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x-5\right)\left(x-y\right)\)