Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 18:33

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

Lương Châu Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 12 2017 lúc 7:17

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc ở vị trí đồng vị ⇒ DE // BC

⇒ Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b)

Giải bài 15 trang 75 Toán 8 Tập 1 | Giải bài tập Toán 8

Ngô Thanh Tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 11 2021 lúc 14:36

b: Xét ΔABC có 

F là trung điểm của AB

E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC

Suy ra: FE//BD và FE=BD

hay BDEF là hình bình hành

tiết cẩm ly
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
Phạm Đỗ Bảo Ngọc
Xem chi tiết
VuongTung10x
27 tháng 8 2021 lúc 12:53

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

Khách vãng lai đã xóa
 Đỗ Hà Nam Phương
Xem chi tiết
Vinh Thuy Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 23:09

Xét ΔABC có 

BE là đường phân giác ứng với cạnh AC

nên \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\left(1\right)\)

Xét ΔABC có 

CD là đường phân giác ứng với cạnh AB

nên \(\dfrac{AD}{DB}=\dfrac{AC}{BC}\left(2\right)\)

Ta có: ΔBAC cân tại A

nên \(AB=AC\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

hay DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

mà \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

Xét ΔEDC có \(\widehat{EDC}=\widehat{ECD}\left(=\widehat{DCB}\right)\)

nên ΔEDC cân tại E

Suy ra: ED=EC=BD