a) Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)
Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)
Hình thang BDEC(BC//DE) có \(\widehat{B}=\widehat{C}\left(=60^0\right)\)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Ta có: \(DE=\dfrac{BC}{2}\)(cmt)
\(BD=\dfrac{1}{2}AB\)(D là trung điểm của AB)
\(EC=\dfrac{1}{2}AC\)(E là trung điểm của AC)
mà BC=AB=AC(ΔABC đều)
nên DE=BD=EC
Vậy: BDEC là hình thang cân có đáy nhỏ bằng cạnh bên
b) Ta có: \(DE=BD=EC=\dfrac{AB}{2}\)(cmt)
nên DE=BC=EC=3(cm)
Chu vi hình thang BDEC là:
C=DE+DB+EC+BC=3+3+3+6=15(cm)