chứng minh
a) n3 – n + 4 không chia hết cho 3 ;
b) n2 + 11n + 39 không chia hết cho 49 ;
c) n2 + 3n + 5 không chia hết cho 121.
Chứng minh rằng: “Với mọi số tự nhiên n, n3 chia hết cho 3 thì n chia hết cho 3”. Một bạn học sinh đã dùng phản chứng như sau:
Bước 1: Giả sử n không chia hết cho 3 khi đó n = 3k + 1 hoặc n = 3k + 2, k ∈ N .
Bước 2: Với n = 3k + 1 ta có n3 = (3k + 1)3 = 27k3 + 27k2 + 9k + 1 chia hết cho 3
Bước 3: Với n = 3k + 2 ta có n3 = (3k + 2)3 = 27k3 + 54k2 + 36k + 4 không chia hết cho 3 (mâu thuẫn)
Bước 4: Vậy n chia hết cho 3.
Lập luận trên sai từ bước nào?
A. Bước 1.
B. Bước 2
C. Bước 3.
D. Bước 4.
Đáp án: B
Bước 2 sai vì 27k3 + 27k2 + 9k + 1 không chia hết cho 3
cho số tự nhiên n chia hết cho 3. Chứng tỏ:A=n3+n2+3 không chia hết cho 9
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm
chứng minh
a) (n+3)^2 - (n+1)^2 chia hết cho 8 với mọi số tự nhiên n
b) (n+6)^2 - (n-6)^2 chia hết cho 24 với mọi số tự nhiên n
a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2)
Sẽ ko chia hết cho 8 nếu n là số lẻ!
b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n
Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt
Bài 1. Chứng minh
a, 10^ 2020 + 10^ 2021 + 10^ 2022 chia hết cho 222
b, 81^ 7 – 27^ 9 – 9^ 13 chia hết cho 45
c, 10^ 6 – 5 ^7 chia hết cho 59
d, 24^ 54 .54^ 24 .2^ 10 chia hết cho 72 ^63
e,3^ n+2 – 2^ n+2 + 3^ n – 2 ^n chia hết cho 10;
f, 3^ n+3 + 3^ n+1 + 2^ n+3 + 2^ n+2 chia hết cho 6
Bài 2.
a, Cho A = 1 + 2 + 2 ^2 + 2 ^3 + ...+ 2^ 99 . Chứng tỏ A chia hết cho 3; A chia 7 dư 1.
b, Cho B = 2 + 2^ 2 + 2^ 3 + ...+ 2^ 99 + 2^ 100 . Hỏi A có chia hết cho 6 không?
Bài 3. Cho A = 9^ 7 + 3^ 13 + 2. Hỏi A có chia hết cho 10 không?
chứng minh (n-1)3+n3+(n+1)3 chia hết cho 9
chứng minh n(n3)chia hết cho 3
Chứng minh rằng với n ∈ N * : n 3 + 3 n 2 + 5 n chia hết cho 3
Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
Chứng minh rằng với mọi số tự nhiên lẻ n:
1. n2 + 4n + 8 chia hết cho 8
2. n3 + 3n2 - n - 3 chia hết cho 48
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
Chứng minh 3+....+100 chia hết cho 3
Chứng minh 1112111chia hết cho 1111
Chứng minhA=11...1(2001 chữ số 1)chia hết cho 3
Chứng minhB=11...1(2000 chữ số 1)chia hết cho 11