Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Chứng minh rằng: “Với mọi số tự nhiên n, n3 chia hết cho 3 thì n chia hết cho 3”. Một bạn học sinh đã dùng phản chứng như sau:

Bước 1: Giả sử n không chia hết cho 3 khi đó n = 3k + 1 hoặc n = 3k + 2, k ∈ N .

Bước 2: Với n = 3k + 1 ta có  n3 = (3k + 1)3 = 27k3 + 27k + 9k + 1 chia hết cho 3

Bước 3: Với n = 3k + 2 ta có  n3 = (3k + 2)3 = 27k3 + 54k2 + 36k + 4 không chia hết cho 3 (mâu thuẫn)

Bước 4: Vậy n chia hết cho 3.

Lập luận trên sai từ bước nào?

A. Bước 1.

B. Bước 2

C. Bước 3.

D. Bước 4.

Cao Minh Tâm
3 tháng 5 2019 lúc 7:45

Đáp án: B

Bước 2 sai vì  27k3 + 27k + 9k + 1 không chia hết cho 3


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Hoàng Ân
Xem chi tiết
Diệp Ẩn
Xem chi tiết
Phùng Bảo Trân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Dũng Lê
Xem chi tiết
Tiểu Z
Xem chi tiết