Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
:vvv
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 6 2021 lúc 21:24

Đk:\(x\ge1;x\le-2\)

Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)

\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)

Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)

TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)

Vậy...

:vvv
Xem chi tiết
missing you =
31 tháng 5 2021 lúc 20:19

\(=>x^3=(\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)})^3\)

\(x^3=2\left(\sqrt{3}+1\right)-3.\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]^2.\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

+\(3\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]^2\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]-2\left(\sqrt{3}-1\right)\)

\(x^3=\)

\(4-3\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\left[\sqrt[3]{2\left(\sqrt{3}+1\right)}-\sqrt[3]{2\left(\sqrt{3}-1\right)}\right]\)

\(x^3=4-3.\left[\sqrt[3]{4\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right].\)\(x\)

\(x^3=4-3\left[\sqrt[3]{4\left(3-1\right)}\right].x\)

\(x^3=4-3.2x\)

\(x^3=4-6x\)

thay \(x^3=4-6x\) vào A=>\(A=\left(4-6x+6x-5\right)^{2009}=\left(-1\right)^{2009}=-1\)

:vvv
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2021 lúc 17:00

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)

\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)

\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))

\(\Leftrightarrow x^2+1=4x^2\)

\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)

:vvv
Xem chi tiết
:vvv
Xem chi tiết
Akai Haruma
18 tháng 6 2021 lúc 22:48

Lời giải:
Đặt $\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b$ thì pt trở thành:

\(\left\{\begin{matrix} a^2+b^2+ab=1\\ a^3-b^3=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ (a-b)(a^2+ab+b^2)=2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2+ab+b^2=1\\ a-b=2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} (a-b)^2+3ab=1\\ a-b=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a(-b)=1\\ a+(-b)=2\end{matrix}\right.\)

Theo đl Viet đảo thì $a,-b$ là nghiệm của pt $X^2-2X+1=0$

$\Rightarrow a=-b=1$

$\Leftrightarrow \sqrt[3]{x+1}=1; \sqrt[3]{x-1}=-1$

$\Rightarrow x=0$

Vậy.........

Mai Thị Thúy
Xem chi tiết
Mai Thị Thúy
22 tháng 7 2021 lúc 16:07

mong mọi người giải giúp em vs gianroigianroi

Mai Thị Thúy
Xem chi tiết
Nguyễn Ngọc Bảo Quang
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 20:54

Coi như bước trên bạn đã làm đúng, giải pt vô tỉ thôi nhé:

TH1: \(x=y\)

\(\Rightarrow x^2+x+2=\sqrt{5x+5}+\sqrt{3x+2}\)

\(\Leftrightarrow x^2-x-1+\left(x+1-\sqrt{3x+2}\right)+\left(x+2-\sqrt{5x+5}\right)=0\)

\(\Leftrightarrow x^2-x-1+\dfrac{x^2-x-1}{x+1+\sqrt{3x+2}}+\dfrac{x^2-x-1}{x+2+\sqrt{5x+5}}=0\)

TH2: \(x=4y+3\)

Đây là trường hợp nghiệm ngoại lai, lẽ ra phải loại (khi bình phương lần 2 phương trình đầu, bạn quên điều kiện nên ko loại trường hợp này)

Big City Boy
Xem chi tiết