tìm gtln gtnn của hàm số y=|sinx +cos2x|-2sinx
Tìm GTLN và GTNN của hàm số: y = 2 sin x + cos x + 3 2 cos x - sin x + 4
Tìm GTLN và GTNN của hàm số: y = |sinx + cos2x|
Đặt \(sinx=t\left(t\in\left[-1;1\right]\right)\)
\(y=\left|sinx+cos2x\right|=\left|2sin^2x-sinx-1\right|\)
\(\Leftrightarrow y=\left|f\left(t\right)\right|=\left|2t^2-t-1\right|\)
\(f\left(-1\right)=2\Rightarrow y=2\)
\(f\left(1\right)=0\Rightarrow y=0\)
\(f\left(\dfrac{1}{4}\right)=-\dfrac{9}{8}\Rightarrow y=\dfrac{9}{8}\)
\(\Rightarrow y_{min}=0;y_{max}=2\)
Tìm GTLN và GTNN của hàm số y = 2 sin x + cos x + 3 2 cos x - sin x + 4 là
Tìm GTLN và GTNN của hàm số y = 2 sin x + cos x + 3 2 cos x - sin x + 4 là:
A. m a x y = 1 m i n y = - 1 11
B. m a x y = 2 m i n y = - 2 11
C. m a x y = 2 m i n y = 2 11
D. m a x y = 1 m i n y = 1 11
Tìm GTLN, GTNN của hàm số :
\(y=sin^3x-cos2x+sinx-1\)
\(y=sin^3x+2sin^2x+sinx-2\)
đặt \(t=sinx\) với \(t\in\left[-1;1\right]\)
pt \(\Leftrightarrow\)\(y=t^3+2t^2+t-2\)
\(y'=3t^2+4t+1\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-\dfrac{1}{3}\end{matrix}\right.\)
x | -1 -1/3 1 |
y' | 0 - 0 + |
y | -2 - -58/27 + 2 |
vậy GTLN của y = 2 với t=1 \(\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)
GTNN của y=-58/27 với \(t=-\dfrac{1}{3}\Leftrightarrow sinx=-\dfrac{1}{3}\Leftrightarrow x=sin^{-1}\left(-\dfrac{1}{3}\right)\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tìm GTLN,GTNN của hàm số:
a, \(y=3cosx-1\)
b, \(y=5+2sinx\)
c,\(y=\sqrt{3+cos2x}\)
d,\(y=\sqrt{5sinx-1}+2\)
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
Tìm GTLN; GTNN của các hàm số:
\(a,y=2sin^2x-cos2x\)
\(b,y=3\sqrt{1+sinx}-1\) trên đoạn \(\left[0;\dfrac{\pi}{3}\right]\)
a, \(y=2sin^2x-cos2x=1-2cos2x\)
Vì \(cos2x\in\left[-1;1\right]\Rightarrow y=2sin^2x-cos2x\in\left[-1;3\right]\)
\(\Rightarrow\left\{{}\begin{matrix}y_{min}=-1\\y_{max}=3\end{matrix}\right.\)
tìm tập xác định của các hàm số:
1.y=sin2x
2.y=\(\dfrac{1-cosx}{sinx}\)
3.y=\(\dfrac{1-2sinx}{cos2x}\)
4.y=tan\(\left(x+\dfrac{\pi}{4}\right)\)
1. \(D=R\)
2. \(sinx\ne0\Leftrightarrow x\ne k\pi\Rightarrow D=R\backslash\left\{k\pi|k\in R\right\}\)
3. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+\dfrac{k\pi}{2}|k\in R\right\}\)
4. \(cos\left(x+\dfrac{\pi}{4}\right)\ne0\Leftrightarrow x+\dfrac{\pi}{4}\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+k\pi\Rightarrow D=R\backslash\left\{\dfrac{\pi}{4}+k\pi|k\in R\right\}\)